I have tried Runge Kutta method on this coupled nonlinear ode and get the error respect to the matrix dimension. Please help me with this.
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
% Define spatial domain
Ly = 2; % Length of domain
Lz = 1;
N = 200; % Number of discretization points
M = 200;
dy = Ly/N;
dz = Lz/M;
y = -1; % Define x domain % for fixed values of y
z = 0:dz:Lz;
[Y,Z] = meshgrid(y,z);
% Define discrete wavenumbers
eta = (2*pi/Ly)*[-N/2:N/2];
eta = fftshift(eta'); % Re-order fft wavenumbers
jeta = (2*pi/Lz)*[-M/2:M/2];
jeta = fftshift(jeta'); % Re-order fft wavenumbers
[Eta,Jeta] = meshgrid(eta,jeta);
%% Time domain %%
t(1) = 0; dt = 0.05; tf = 10; L = ceil(tf/dt)+1;
%% function handle %%
f = @(t,F,G) (-g1.*J-F.*((F).*(2.*pi.*1i.*jeta))-((nu+nu_t).*(jeta.^2+eta.^2).*4.*pi.^2)-(nu_t.*4.*pi.^2.*jeta.*eta)-(G.*2.*pi.*1i.*eta));
g = @(t,F,G) (-g1.*J.*P-G.*((G).*(2.*pi.*1i.*eta))-((nu+nu_t).*(jeta.^2+eta.^2).*4.*pi.^2)-(nu_t.*4.*pi.^2.*jeta.*eta)-(F.*2.*pi.*1i.*jeta));
%% Initial condition %%
F(1) = 0; G(1) = 0;
%% Main calculation %%
for i = 1:L+1
t(i+1) = t(i)+dt
k1F = f(t(i), F(i), G(i));
k1G = g(t(i), F(i), G(i));
k2F = f(t(i)+dt./2,F(i)+dt./2.*k1F,G(i)+dt./2.*k1G);
k2G = g(t(i)+dt./2,F(i)+dt./2.*k1F,G(i)+dt./2.*k1G);
k3F = f(t(i)+dt./2,F(i)+dt./2.*k2F,G(i)+dt./2.*k2G);
k3G = g(t(i)+dt./2,F(i)+dt./2.*k2F,G(i)+dt./2.*k2G);
k4F = f(t(i)+dt, F(i)+dt.*k3F, G(i)+dt.*k3G);
k4G = g(t(i)+dt, F(i)+dt.*k3F, G(i)+dt.*k3G);
F(i+1) = F(i) + (dt./6).*(k1F + 2.*k2F + 2.*k3F + k4F);
G(i+1) = G(i) + (dt./6).*(k1G + 2.*k2G + 2.*k3G + k4G)
end
1 Kommentar
Torsten
am 6 Jan. 2022
We can't check your code because several variables in the definition of f and g are undefined.
Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!