does two polygons interest or not?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
CHANDRABHAN Singh
am 6 Jan. 2022
Beantwortet: Steven Lord
am 6 Jan. 2022
Let's say
these are two non interscting ploygons (shown below). How can i get a logical relationship out of this. Something like, if the polygons intersect or touch
paramter = true;
otherwise
parameter = false;
x1 =[-2.6967 -2.0891 -0.0846 1.5544 2.6872 -2.6967];
x2 = [5.6494 6.6386 6.6898 4.0313 1.3002 1.9802 5.6494];
y1 = [ 0.1340 -1.7104 -2.6987 -2.2076 -0.2624 0.1340];
y2 = [1.8624 3.4274 4.2346 6.6998 3.9686 2.2082 1.8624];
plot(x1,y1,x2,y2);
grid on;
poly1 = polyshape(x1',y1');
poly2 = polyshape(x2',y2');
polyout = intersect(poly1,poly2);
0 Kommentare
Akzeptierte Antwort
Steven Lord
am 6 Jan. 2022
You may be able to use the approach from this blog post that determines if two states (represented as polyshape objects) share a border.
0 Kommentare
Weitere Antworten (1)
DGM
am 6 Jan. 2022
Bearbeitet: DGM
am 6 Jan. 2022
You could test for an overlap using the intersection you calculated:
x1 = [0 1 1 0 0];
y1 = [0 0 1 1 0];
x2 = [1 2 2 1 1]-0.2;
y2 = [1 1 2 2 1]-0.2;
plot(x1,y1,x2,y2);
grid on;
poly1 = polyshape(x1',y1');
poly2 = polyshape(x2',y2');
polyout = intersect(poly1,poly2);
theyintersect = polyout.NumRegions~=0 % returns a logical scalar
Although that won't return true if they are merely tangent.
x1 = [0 1 1 0 0];
y1 = [0 0 1 1 0];
x2 = [1 2 2 1 1];
y2 = [1 1 2 2 1]-0.2;
plot(x1,y1,x2,y2);
grid on;
poly1 = polyshape(x1',y1');
poly2 = polyshape(x2',y2');
polyout = intersect(poly1,poly2);
theyintersect = polyout.NumRegions~=0
2 Kommentare
DGM
am 6 Jan. 2022
Bearbeitet: DGM
am 6 Jan. 2022
From the webdocs:
The NumRegions property is described as:
Number of regions making up the polygon, specified as a scalar integer. A region is an area bounded by an outer boundary, which may contain hole boundaries that lie entirely inside the outer boundary.
So a simple polyshape (e.g. a square) would have one region. If a polyshape intersects itself (e.g. a bowtie), it might have more than one region. If a polyshape encloses zero area, it has zero regions.
As a trivial polyshape has zero vertices, you could alternatively check to see if the vertex list is empty.
theyintersect = numel(poly1.Vertices)~=0
I just chose to use NumRegions instead.
Siehe auch
Kategorien
Mehr zu Elementary Polygons finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!