Why i dont see my image after pca analysis?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello, I am working on an image to reduce its size without comprising much on the quality. i gound the first 300 eigenvectors are the most significant and i process my image based on those. below is my coding. when i try to plot it i get only grey color screen. any thought on fixing it will be appreciated highly.
>> I=imread('abc.jpg');
>> I2 = im2double(I);
>> II=I2(:,:,1);
>> [coeff,score,latent] = pca(II);
>> Me=mean(II);
>> plot(0:2847,[0;cumsum(latent)/sum(latent)],'-ob');
>> plot(0:400,[0;cumsum(latent(1:400))/sum(latent)],'-ob');
>> C300=coeff(:,300);
>> S300=score(:,300);
>> Z300=C300*S300';
>> Z300=Z300';
>> MM=repmat(Me,2848,1);
>> Z300M=Z300+MM;
>> Z300mu=uint8(Z300M);
>> image(repmat(Z300mu,1,1,3))
0 Kommentare
Antworten (3)
Image Analyst
am 24 Dez. 2014
What is the range of Z300mu and what is its data type? Try using imshow() with the [] option, instead of image().
0 Kommentare
Chris Jademan
am 3 Apr. 2015
Hello Hydro, I have just applied the code you had given and there is an error.
Error in CompressImage (line 4) [coeff,score,latent] = pca(II);
What should I do to fix it ?
1 Kommentar
Brendan Hamm
am 6 Apr. 2015
So the fact that you have an indexing:
II=I2(:,:,1);
implies that II is a m-by-n-by-1 array (3-dimensional array). The pca function expects a m-by-n matrix. You can achieve this with the squeeze function:
II = squeeze(I2(:,:,1));
which will remove the singleton dimension of your 3-d array, then the pca function should work.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!