How to train resnet50 model on multiple input?

8 Ansichten (letzte 30 Tage)
john karli
john karli am 27 Dez. 2021
Kommentiert: john karli am 28 Dez. 2021
I am following the belw link to make the multiple input network
but my dataset is different from the above link. I have time series data with shape (1,1024,2) in .mat file and data with 2 channel (224,224,2) .mat file. How do i make the image datastore as upperhalf and bottom half

Antworten (1)

yanqi liu
yanqi liu am 27 Dez. 2021
yes,sir,may be use addLayers、connectLayers to merge net layers
  1 Kommentar
john karli
john karli am 28 Dez. 2021
I have tried but get the error my code is
trainpath1 = fullfile("D:\folder\");
trainpath2 = fullfile("E:\Classes\");
%imds1 = imageDatastore(trainpath1, 'IncludeSubfolders',true, 'FileExtensions','.PNG','LabelSource','foldernames');
imds1 = imageDatastore(trainpath1, 'FileExtensions', '.mat', 'IncludeSubfolders',true, ...
'LabelSource','foldernames',...
'ReadFcn',@matReader);
imds2 = signalDatastore(trainpath2,'SignalVariableNames',["frame","label"],'IncludeSubfolders',true,'FileExtensions','.mat');
%imds2 = imageDatastore(trainpath2, 'IncludeSubfolders',true, 'FileExtensions','.PNG','LabelSource','foldernames');
labelds = fileDatastore('labels.mat','ReadFcn',@myReadFcn,'ReadMode','partialfile');
cds = combine(imds1,imds2,labelds);
% Change the image sizes accordingly
imsize1 = [656 875 2];
imsize2 = [1 1024 2];
numClasses = 11;
%% Define muliple input network
layers1 = [
imageInputLayer(imsize1,'Name','input1')
convolution2dLayer(3,16,'Padding','same','Name','conv_1')
reluLayer('Name','relu_1')
fullyConnectedLayer(10,'Name','fc11')
additionLayer(2,'Name','add')
fullyConnectedLayer(numClasses,'Name','fc12')
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput')];
lgraph = layerGraph(layers1);
layers2 = [imageInputLayer(imsize2,'Name','input2')
convolution2dLayer(3,16,'Padding','same','Name','conv_2')
reluLayer('Name','relu_2')
fullyConnectedLayer(10,'Name','fc21')];
lgraph = addLayers(lgraph,layers2);
lgraph = connectLayers(lgraph,'fc21','add/in2');
plot(lgraph)
%% Define trainingOptions and also set 'Shuffle' to 'never' for this workaround to work
options = trainingOptions('adam', ...
'InitialLearnRate',0.001, ...
'LearnRateSchedule','piecewise',...
'MaxEpochs',3, ...
'MiniBatchSize',128, ...
'Verbose',1, ...
'Plots','training-progress');
net = trainNetwork(cds,lgraph,options);
error
Error using trainNetwork (line 184)
Dimensions of arrays being concatenated are not consistent.
Caused by:
Error using horzcat
Dimensions of arrays being concatenated are not consistent.

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by