How to do symbolic integration
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
%% I am unable to get the result. Thank you so much in advance
clc;
clear;
syms omega x n m
% assuming omega::real,omega>0,m::integer,m>0,n::integer,n>0;
fun=int(cos(atan(1,x))^m*sin(omega*x)/(1+x^2)^((n)/2+1),x,0,Inf);
0 Kommentare
Antworten (2)
Star Strider
am 23 Dez. 2021
It apparently does not have a symbolic solution (this is not uncommon).
It does have a piecewise closed-form solution, at least over some regions, and one option would be to numerically integrate it (although that could have problems as well) —
syms omega x n m real
sympref('AbbreviateOutput',false);
assume(m,'integer')
assumeAlso(m,'positive')
assume(n,'integer')
assumeAlso(n,'positive')
assume(omega,'positive')
% assuming omega::real,omega>0,m::integer,m>0,n::integer,n>0;
integrand = cos(atan(1,x))^m*sin(omega*x)/(1+x^2)^((n)/2+1)
integrand = simplify(integrand, 500)
fun=int(integrand,x,0,Inf)
nfun = matlabFunction(integrand) % Anonymous Function Argument To 'integral'
This likely as good as it gets.
.
2 Kommentare
KSSV
am 23 Dez. 2021
Try substituing the values of m and n.
syms omega positive real
% syms n m positive integer
syms x
% assuming omega::real,omega>0,m::integer,m>0,n::integer,n>0;
m = 5 ; n = 4 ;
fun=int(cos(atan(1,x))^m*sin(omega*x)/(1+x^2)^((n)/2+1),x,0,Inf)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


