Info

Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.

differential Equations with ode45

1 Ansicht (letzte 30 Tage)
Alex Pak
Alex Pak am 2 Nov. 2014
Geschlossen: MATLAB Answer Bot am 20 Aug. 2021
Hello, please help me, I'm trying to solve differential Equations, but I can't understand how I can implement m1 ( m1 is derivative m)
Code
% function OdeCaller2
N=3;
J=12800;
q=800;
S=50;
l=5;
ks=-0.005;
ko=-0.01;
ka=-0.01;
ky=-0.01;
a=3;
kz=-0.08671;
[T,Y]=ode45(@odefun10, [0 4], [0 0 0 0]);
plot(T,Y)
grid on
function dy=odefun10(t,y)
omegaz=y(1);
omegay=y(2);
gamma=y(3);
V=y(4);
m=2*(N-V)+tand(V)*(omegay*cosd(gamma)-omegaz*sind(gamma));
m1=????????????; *How can I implement this?*
dy=zeros(4,1);
delta=(J/(q*S*l*ks))*(3*(m-omegaz)+m1)-(ko+ka*a+kz*omega)/ks;
dy(1)=((q*S*l)/J)*(ko+ko*a+ks*delta+kz*omegaz);
dy(2)=((q*S*l)/J)*(ko+ky*a+ky*delta+ky*omegay);
dy(3)=omegaz*cosd(gamma)+omegay*sind(gamma);
dy(4)=emegay-tand(V)*(omegay*cosd(gamma)-omegaz*sind(gamma));
end
end
  1 Kommentar
Zoltán Csáti
Zoltán Csáti am 2 Nov. 2014
Since the second equation contains delta (and within it, m1) which is in third and fourth equations, the system is implicit. Try to put it into explicit form, or use the ode15i solver.

Antworten (0)

Diese Frage ist geschlossen.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by