Feature Reduction using PCA

4 Ansichten (letzte 30 Tage)
hend
hend am 31 Okt. 2014
Beantwortet: Prasanna am 2 Jun. 2025
I'm working with Gabor filter bank, now I have a huge no.of features by the no.of used filters and I want to deploy the PCA to reduce the features number, but I don't know how to begin and which function to use, plz help.

Antworten (1)

Prasanna
Prasanna am 2 Jun. 2025
Hi Hend,
It is my understanding that you have extracted a large number of features from your data using a Gabor filter bank, and now you wish to reduce the dimensionality of these features using Principal Component Analysis (PCA).
To perform PCA in MATLAB, you can use the built-in pca function. Suppose your feature matrix is called features, where each row represents a sample and each column represents a feature. You can apply PCA as follows:
[coeff, score, latent] = pca(features);
In the above example, score gives you the transformed features in the new PCA space.
To reduce the number of features, select the first N columns of score that cumulatively explain your desired amount of variance (e.g., 95%). For more information, you can refer the following pca documentation: https://www.mathworks.com/help/stats/pca.html
Hope this helps!

Kategorien

Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by