How to reduce the time of running when using pathPlannerRRT?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
clc; clear all; close all;
tic
profile on
mapWidth = 35;
mapLength = 40;
costVal = 0.1;
cellSize = 0.5;
startPose = [5, 5, 90]; % [meters, meters, degrees]
goalPose = [31, 17, 90];
costmap = vehicleCostmap(mapWidth,mapLength,costVal,'CellSize',cellSize);
L = 4.7;
W = 1.8;
H = 1.4;
FrontOverhang = 0;
RearOverhang = L/2;
vehicleDims = vehicleDimensions(L, W, H, 'FrontOverhang', FrontOverhang, 'RearOverhang', RearOverhang); % 4.5 m long, 1.7 m wide
numCircles = 3;
ccConfig = inflationCollisionChecker(vehicleDims,numCircles);
costmap.CollisionChecker = ccConfig;
[x,y] = meshgrid(25:0.5:27,12:0.5:14);
xyPoints = [x(:),y(:)];
costVal = 0.9;
setCosts(costmap,xyPoints,costVal);
[x2,y2] = meshgrid(10:0.5:32,0:0.5:8);
xyPoints2 = [x2(:),y2(:)];
setCosts(costmap,xyPoints2,costVal);
[x3,y3] = meshgrid(33:0.5:35,12:0.5:14);
xyPoints3 = [x3(:),y3(:)];
setCosts(costmap,xyPoints3,costVal)
[x4,y4] = meshgrid(15:0.5:20,12:0.5:14);
xyPoints4 = [x4(:),y4(:)];
setCosts(costmap,xyPoints4,costVal)
plot(costmap);
isPathValid = false;
kk = 1;
while (isPathValid == 0) && (kk < 15)
planner = pathPlannerRRT(costmap, 'ApproximateSearch', false, 'MaxIterations', 1e4, 'MinTurningRadius', 3, 'ConnectionDistance', 10);
refPath = plan(planner,startPose,goalPose);
isPathValid = checkPathValidity(refPath,costmap);
kk = kk + 1;
end
transitionPoses = interpolate(refPath);
hold on
plot(refPath,'DisplayName','Planned Path')
scatter(transitionPoses(:,1),transitionPoses(:,2),[],'filled', ...
'DisplayName','Transition Poses')
hold off
p = profile('info')
save myprofiledata p
toc
0 Kommentare
Antworten (1)
Sachin Lodhi
am 16 Feb. 2024
Hello Hongtao, it appears that you are facing extended processing times with your code and are interested in strategies to decrease it. To shorten the execution time of the provided code, adjusting certain parameter values may be necessary.
An additional optimization tactic, once the goal has been achieved, involves lowering the limit on the number of iterations and enlarging the maximum allowable distance for connections. Currently, your maximum iterations are set at 10,000; by diminishing this value, you could potentially lessen the execution time.
For further details, you can consult the following link: https://www.mathworks.com/help/nav/ref/plannerrrtstar.html#d126e155691
0 Kommentare
Siehe auch
Kategorien
Mehr zu Mapping and Localization Using Vision and Lidar Data finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!