unrecognized function or variable for spring mass damper with forcing function
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Alexander Salas
am 9 Dez. 2021
Beantwortet: Walter Roberson
am 9 Dez. 2021
Hello,
I am trying to run a springn mass damper with a forcing function. I can run it without the forcing function but when I add the sin*t components I get an unrecognized function or variable error. I am still new to matlab and am having a hard time.
clear
close all
% M*xddot + C*xdot + K*x = F(t)
% System parameters
m1 = 2000; Icg = 2500; % kg
c1 = 3000; c2 = 3000; % kg/s
k1 = 30000; k2 = 30000; % N/m
l1 = 1; l2 = 1.5;
M = [m1 0;0 Icg];
C = [(c1+c2) (c1*l1-c2*l2);(c1*l1-c2*l2) ((c2*l2^2)+(c1*l1^2))];
K = [(k1+k2) (k1*l1-k2*l2);(k1*l1-k2*l2) ((k2*l2^2)+(k1*l1^2))];
Br = [k1 k2;k1*l1 -k2*l2];
Brdot = [c1 c2;c1*l1 -c2*l2];
r = [(0.01*sin(17.453*t)) (0.01*sin(17.453*t-pi))]';
r1 = [(0.17453*cos(17.453*t-pi)) (-0.17453*cos(17.453*t))]';
%%%%%%%%%%%
F = @(t) (Br*r) + (Brdot*r1);
% Time grid
t0 = 0; tf = 10; dt = 0.01; t = t0:dt:tf;
% Set initial state and integrate equations of motion
s0 = [1 1 0 0]';
f = @(t,s) [s(3);s(4);M\F(t)-M\C*[s(3) s(4)]'-M\K*[s(1) s(2)]'];
[t,s] = ode45(f,t,s0);
% Plot system motion
figure
subplot(211),plot(t,s(:,1),t,s(:,2),'LineWidth',2)
grid minor
legend('y1','y2')
xlabel('Time (s)')
ylabel('Displacements (m)')
title('System Dynamic Response')
subplot(212),plot(t,s(:,3),t,s(:,4),'LineWidth',2)
grid minor
legend('theta1','theta2')
xlabel('Time (s)')
ylabel('Velocity (rad)')
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 9 Dez. 2021
clear
close all
% M*xddot + C*xdot + K*x = F(t)
% System parameters
m1 = 2000; Icg = 2500; % kg
c1 = 3000; c2 = 3000; % kg/s
k1 = 30000; k2 = 30000; % N/m
l1 = 1; l2 = 1.5;
M = [m1 0;0 Icg];
C = [(c1+c2) (c1*l1-c2*l2);(c1*l1-c2*l2) ((c2*l2^2)+(c1*l1^2))];
K = [(k1+k2) (k1*l1-k2*l2);(k1*l1-k2*l2) ((k2*l2^2)+(k1*l1^2))];
Br = [k1 k2;k1*l1 -k2*l2];
Brdot = [c1 c2;c1*l1 -c2*l2];
r = @(t) [(0.01*sin(17.453*t)) (0.01*sin(17.453*t-pi))]';
r1 = @(t) [(0.17453*cos(17.453*t-pi)) (-0.17453*cos(17.453*t))]';
%%%%%%%%%%%
F = @(t) (Br*r(t)) + (Brdot*r1(t));
% Time grid
t0 = 0; tf = 10; dt = 0.01; t = t0:dt:tf;
% Set initial state and integrate equations of motion
s0 = [1 1 0 0]';
f = @(t,s) [s(3);s(4);M\F(t)-M\C*[s(3) s(4)]'-M\K*[s(1) s(2)]'];
[t,s] = ode45(f,t,s0);
% Plot system motion
figure
subplot(211),plot(t,s(:,1),t,s(:,2),'LineWidth',2)
grid minor
legend('y1','y2')
xlabel('Time (s)')
ylabel('Displacements (m)')
title('System Dynamic Response')
subplot(212),plot(t,s(:,3),t,s(:,4),'LineWidth',2)
grid minor
legend('theta1','theta2')
xlabel('Time (s)')
ylabel('Velocity (rad)')
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!