Error when trying lstm regression not sure of the issue

1 Ansicht (letzte 30 Tage)
Nathaniel Porter
Nathaniel Porter am 9 Dez. 2021
Kommentiert: Nathaniel Porter am 15 Dez. 2021
clc; clear all; close all;
%Import/Upload data
load generated_data.mat
%transposing glucose data
X1_T = X1';
%transposing insulin data
X2_T = X2';
%Separating data in training, validation and testing data
X1_train = X1_T;
%Partioning data for training
train_X1 = X1_train(1:120,:);
train_Y1 = Y1(1:120);
%DataParts = zeros(size(Train_inputX1,1), size(Train_inputX1,2),1,2); %(4500,400,1,2)
%DataParts(:,:,:,1) = real(cell2mat(Train_inputX1));
%DataParts(:,:,:,2) = imag(cell2mat(Train_inputX1)) ;
XTrain=(reshape(train_X1, [120,1,1,2289])); %Train data
%Separating and partioning for validation data
val_X1 = X1_train(121:150,:);
XVal=(reshape(val_X1, [30,1,1,2289])); %Train data
%Separating and partioning for test data
test_X1 = X1_train(151:180,:);
%Xtest=(reshape(test_X1, [120,1,1,2289])); %Train data
%Separating data in training, validation and testing data
%X2_train = X2_T;
%Partioning data for training
%train_X2 = X2_train(1:120,:);
%Separating and partioning for validation data
%val_X2 = X2_train(121:150,:);
%Separating and partioning for test data
%test_X2 = X2_train(151:180,:);
%The number of features chosen to be two representing both glucose and
%insulin
numFeatures = size(X1_T,2);
% number of hidden units represent the size of the data
numHiddenUnits = 180;
%number of classes represent different patients normal,LIS,type2....
numClasses = length(categories(categorical(Y1)));
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numClasses)
softmaxLayer
regressionLayer];
options = trainingOptions('adam', ...
'MaxEpochs',60, ...
'GradientThreshold',2, ...
'Verbose',0, ...
'LearnRateDropFactor',0.2, ...
'LearnRateDropPeriod',5, ...
'Plots','training-progress');
net = trainNetwork(X1_train',categorical(Y1),layers,options);
  1 Kommentar
KSSV
KSSV am 9 Dez. 2021
You have to specify the error. We don't have your data and also we don't know your error to help you.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

yanqi liu
yanqi liu am 13 Dez. 2021
yes,sir,may be change the layers,such as
clc; clear all; close all;
%Import/Upload data
load generated_data.mat
%transposing glucose data
X1_T = X1';
%transposing insulin data
X2_T = X2';
rand('seed', 0)
ind = randperm(size(X1_T, 1));
X1_T = X1_T(ind, :);
Y1 = Y1(ind);
%Separating data in training, validation and testing data
X1_train = X1_T;
numFeatures = size(X1_T,2);
% number of hidden units represent the size of the data
numHiddenUnits = 180;
%number of classes represent different patients normal,LIS,type2....
numClasses = length(categories(categorical(Y1)));
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(100,'OutputMode','sequence')
dropoutLayer(0.3)
lstmLayer(50,'OutputMode','sequence')
dropoutLayer(0.2)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs',3000, ...
'GradientThreshold',0.2, ...
'Verbose',0, ...
'LearnRateDropFactor',0.2, ...
'LearnRateDropPeriod',5, ...
'Plots','training-progress');
net = trainNetwork(X1_train',categorical(Y1),layers,options);
  1 Kommentar
Nathaniel Porter
Nathaniel Porter am 15 Dez. 2021
Okay, but im trying to use the lstm for a regression so will it still operate as such even though on eof the layers are classifcation layer

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by