how to get basis vector from eigenvalues

2 Ansichten (letzte 30 Tage)
Laura T
Laura T am 8 Dez. 2021
Hi Guys,
I have i have just calculated the eigenvalue:
[V, D] = eig(B)
where previously B = cov(A) gave me a 5x5matrix.
How do i get the 2 basis vectors belonging to axes with the greatest variance? And how to get their corresponding variances?

Antworten (1)

sai charan sampara
sai charan sampara am 9 Mai 2024
Hello,
You can get the 2 basis vectors by simply sorting the eigen values in decreasing order and then usig the sorted indexes to index through the eigen vectors and get the vectors with the 2 largest eigen values as the basis vectors. The same is done in singular value decomposition done by "svd" function in MATLAB. Here is an example code:
A=randi(5,5);
B=cov(A)
B = 5x5
2.3000 1.2500 -0.1000 -0.6500 -0.1000 1.2500 1.0000 0.5000 -0.7500 0.2500 -0.1000 0.5000 1.2000 -1.2000 0.7000 -0.6500 -0.7500 -1.2000 2.2000 -0.4500 -0.1000 0.2500 0.7000 -0.4500 0.7000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
[V,D]=eig(B)
V = 5x5
0.4082 0.2587 0.0518 -0.7121 0.5066 -0.6124 -0.5296 0.3352 -0.2109 0.4333 0.6124 -0.4114 0.3025 0.4820 0.3633 0.2041 -0.2089 0.6271 -0.3589 -0.6265 -0.2041 0.6632 0.6326 0.2954 0.1764
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
D = 5x5
-0.0000 0 0 0 0 0 0.1688 0 0 0 0 0 0.7128 0 0 0 0 0 2.4516 0 0 0 0 0 4.0667
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
[sorted_eigenvalues, idx] = sort(diag(D), 'descend')
sorted_eigenvalues = 5x1
4.0667 2.4516 0.7128 0.1688 -0.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
idx = 5x1
5 4 3 2 1
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
sorted_eigenvectors = V(:, idx);
basis_vector_1 = sorted_eigenvectors(:, 1)
basis_vector_1 = 5x1
0.5066 0.4333 0.3633 -0.6265 0.1764
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
basis_vector_2 = sorted_eigenvectors(:, 2)
basis_vector_2 = 5x1
-0.7121 -0.2109 0.4820 -0.3589 0.2954
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
[U,S,V] = svd(B)
U = 5x5
-0.5066 0.7121 -0.0518 0.2587 -0.4082 -0.4333 0.2109 -0.3352 -0.5296 0.6124 -0.3633 -0.4820 -0.3025 -0.4114 -0.6124 0.6265 0.3589 -0.6271 -0.2089 -0.2041 -0.1764 -0.2954 -0.6326 0.6632 0.2041
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
S = 5x5
4.0667 0 0 0 0 0 2.4516 0 0 0 0 0 0.7128 0 0 0 0 0 0.1688 0 0 0 0 0 0.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
V = 5x5
-0.5066 0.7121 -0.0518 0.2587 -0.4082 -0.4333 0.2109 -0.3352 -0.5296 0.6124 -0.3633 -0.4820 -0.3025 -0.4114 -0.6124 0.6265 0.3589 -0.6271 -0.2089 -0.2041 -0.1764 -0.2954 -0.6326 0.6632 0.2041
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
basis_vector_1 = U(:, 1)
basis_vector_1 = 5x1
-0.5066 -0.4333 -0.3633 0.6265 -0.1764
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
basis_vector_2 = U(:, 2)
basis_vector_2 = 5x1
0.7121 0.2109 -0.4820 0.3589 -0.2954
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by