plot system of 5 odes over time using ode45

5 Ansichten (letzte 30 Tage)
Sam
Sam am 8 Dez. 2021
Bearbeitet: Walter Roberson am 11 Dez. 2021
Here are my equations and initial conditions. I'm trying to plot these odes as a function of time with the following initial conditions:
xinit = [10000, 0, 0.01, 0, 0];
f = @(t,y) [(10000 - (0.01*y(1)) - (0.000000024*y(3)*y(1)*20001)); ((0.05*0.000000024*y(3)*y(1)*20001) - y(2)); ((25000*y(2)) - 23); ((0.95*0.000000024*y(3)*y(1)*20001) - (0.001*y(4))); ((15*0.001*y(4)) - (6.6*y(5)))];
I'm looking for oscillatory behavior. Here they are written slightly differently:
T = 10000;
Q = 0;
V = 0.01
P = 0;
I = 0;
dydt(1) = 10000 - 0.01*T - 0.000000024*V*T*20001;
dydt(2) = 0.05*0.000000024*V*T*20001 - Q;
dydt(3) = 25000*Q - 23;
dydt(4) = 0.95*0.000000024*V*T*20001 - 0.001*P;
dydt(5) = 15*0.001*P - 6.6*I;

Antworten (1)

Walter Roberson
Walter Roberson am 8 Dez. 2021
tspan = [0 0.184];
xinit = [10000, 0, 0.01, 0, 0];
[t, y] = ode45(@odefun, tspan, xinit);
plot(t, y);
legend({'T', 'Q', 'V', 'P', 'I'}, 'location', 'best');
function dydt = odefun(t, y)
T = y(1); Q = y(2); V = y(3); P = y(4); I = y(5);
dydt = zeros(5,1);
dydt(1) = 10000 - 0.01*T - 0.000000024*V*T*20001;
dydt(2) = 0.05*0.000000024*V*T*20001 - Q;
dydt(3) = 25000*Q - 23;
dydt(4) = 0.95*0.000000024*V*T*20001 - 0.001*P;
dydt(5) = 15*0.001*P - 6.6*I;
end
You cannot go much further. By roughly 1.88 the ode functions refuse to continue as the slopes have become to steep.
  4 Kommentare
Walter Roberson
Walter Roberson am 8 Dez. 2021
Bearbeitet: Walter Roberson am 8 Dez. 2021
You can use tiledlayout() to get larger graphs.
Or just put them into different figures.
Plots 2, 4, 5 look like they might fit well on the same plot, but plots 1 and 3 have a significantly different range and do not fit on the same plot.
Good thing you caught my mistake in the second equation.
Walter Roberson
Walter Roberson am 11 Dez. 2021
Bearbeitet: Walter Roberson am 11 Dez. 2021
tspan = [0:.2:50, 100:100:2000];
xinit = [1000, 0, 0.001, 0, 0]; %OR ;xinit = [1000, 0, 0.001, 0, 0]; OR ;xinit = [1, 0, 0.001, 0, 0]; OR ;xinit = [10000, 0, 0.001, 0, 0];
[t, y] = ode45(@odefun, tspan, xinit);
symbols = {'T', 'T^*', 'V', 'P', 'I'};
figure()
whichplot = [1 3];
N = length(whichplot);
for K = 1: N
subplot(N,1,K);
plot(t, y(:,whichplot(K)));
legend(symbols(K), 'location', 'best');
end
function dydt = odefun(t, y)
T = y(1); T__star = y(2); V = y(3); P = y(4); I = y(5);
s = 10000;
k = 2.4*10^-8;
gamma = 2*10^-4;
f = 0.95;
r = 2.5*10^4;
B = 15;
d_T = 0.01;
d_T__star = 1;
d_V = 0.001;
d_P = 23;
d_I = 6.6;
dydt = zeros(5,1);
dydt(1) = s - d_T*T - k*V*T*(1+gamma*I);
dydt(2) = (1-f)*k*V*T*(1+gamma*I) - d_T__star*T__star;
dydt(3) = r*T__star - d_V;
dydt(4) = f*k*V*T*(1+gamma*I) - d_P*P;
dydt(5) = B*d_P*P - d_I*I;
end

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by