Solving non homogenous differential equations numerically using ode45 etc
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Sarah Ghosh
am 28 Okt. 2014
Kommentiert: Mischa Kim
am 4 Nov. 2014
How is a non homogenous differential equation solved in MATLAB using ode45 or ode23. I have a function like:- dmdt = a*exp(Asin(wt) + (2-m)^2);
Can I obtain the numerical solution for this?
Thanks in advance
0 Kommentare
Akzeptierte Antwort
Mischa Kim
am 29 Okt. 2014
Bearbeitet: Mischa Kim
am 4 Nov. 2014
Sarah, yes you can. The typical approach for such an example is to create two functions:
function my_EOM()
a = 1;
A = 1;
w = 1;
fun = @(w,x) sin(w.*x);
param = {a; A; w; fun};
IC = -1;
[t,m] = ode45(@EOM,[0 1],IC,[],param);
plot(t,m)
xlabel('t')
ylabel('m')
grid
end
function dmdt = EOM(t, m, param)
a = param{1};
A = param{2};
w = param{3};
fun = param{4};
dmdt = a*exp(A*fun(w,t) + (2 - m)^2);
end
Save both functions in the same .m-file and with name my_EOM.m. Execute and enjoy.
2 Kommentare
Weitere Antworten (1)
Orion
am 29 Okt. 2014
you can rewrite your equation as :
dmdt + a*exp(Asin(wt)) * exp((2-m)^2) = 0
which is of the form of
y'(t) + f(t)y(t) = g(t)
with
y'(t) = dmdt
f(t) = a*exp(Asin(wt))
y(t) = exp((2-m)^2)
g(t) = 0
Look how it is resolved and just adapt it to your problem.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!