How do I create and plot a confusion matrix for my trained convolutional neural network?

20 Ansichten (letzte 30 Tage)
I can't seem to create a confusion matrix for my validation accuracy outcome of my trained convolutional neural network. Below is the code I am using, and thanks in advance for any help!
-----------------------------------------------------------------------------------
clear
rng('shuffle')
outputFolder = fullfile('D:\Large_grains\Training_set');
trainDigitData = imageDatastore(outputFolder,'IncludeSubfolders',true,'LabelSource','foldernames');
outputFolder = fullfile('D:\Large_grains\Validation_set');
testDigitData = imageDatastore(outputFolder,'IncludeSubfolders',true,'LabelSource','foldernames');
inputSize = [224 224 3];
augimdsTrain = augmentedImageDatastore(inputSize,trainDigitData,'ColorPreprocessing','gray2rgb');
augimdsValidation = augmentedImageDatastore(inputSize,testDigitData,'ColorPreprocessing','gray2rgb');
numClasses = 9;
problem2; % load ResNet-18
miniBatchSize = 32;
validationFrequency = floor(numel(trainDigitData.Labels)/miniBatchSize);
options = trainingOptions('sgdm',...
'LearnRateSchedule','piecewise',...
'LearnRateDropFactor',0.1,...
'LearnRateDropPeriod',2,...
'MaxEpochs',10,...
'InitialLearnRate',0.001,...
'MiniBatchSize',miniBatchSize,...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',validationFrequency);
convnet = trainNetwork(augimdsTrain,lgraph,options);
[YPred] = classify(convnet,augimdsValidation);
plotconfusion(augimdsValidation.Labels,YPred)
  2 Kommentare
Shivam Singh
Shivam Singh am 29 Nov. 2021
Hello Steven,
Can you share what is error which you are facing with code? Also, can you share more information about the model ("lgraph") and the dataset used?
Steven Mozarowski
Steven Mozarowski am 29 Nov. 2021
Thanks for your response, Shivam! I actually managed to have the script produce a confusion matrix earlier today and was meaning to take this post down when I saw your comment!
To answer your questions:
lgraph is a chart that shows information (like validation accuracy, epoch, time elapsed etc.) as training progresses.
The dataset is a pile of starch grain micrographs I had captured using an imaging flow cytometer. The images are organized in folders on a hard drive with 300 training and 200 validation images per species.
Thanks again for reaching out, I really appreciate it!
-Steven

Melden Sie sich an, um zu kommentieren.

Antworten (1)

yanqi liu
yanqi liu am 2 Dez. 2021
yes,sir,if want get the data information,may be use
[c,cm,ind,per] = confusion(augimdsValidation.Labels,YPred)

Kategorien

Mehr zu Recognition, Object Detection, and Semantic Segmentation finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by