why do I get an error "First input argument must be a function handle"
    3 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
Hello,
I want to calculate the integral of the function F_z, like this: 
nUn = 2000; 
nU2n = 1500; 
nU3n = 200; 
nU4n = 20; 
nVn = nUn; 
nV2n = nU2n; 
nV3n = nU3n; 
nV4n = nU4n; 
dt = 0.001 ; % Timestep
t = 0:dt:1;  % Time interval of the vertical excitation
Om = 405 * 2 * pi / 60; % Frequency of exitation [rpm]
phi = Om * t;
n = 3; % Number of blades 
F_z = -(nUn*cos(n*phi) + nU2n*cos(2*n*phi) + nU3n*cos(3*n*phi) + ...
    + nU4n*cos(4*n*phi) + nVn*sin(n*phi) + nV2n*sin(2*n*phi) + ...
    + nV3n*sin(3*n*phi) + nV4n*sin(4*n*phi)); 
% Plot of the evolution fo the vertical excitation 
plot(t, F_z) 
% Computing and plot of PSD 
for f = 0:0.1:100    
    F_z_sqMean = f * integral((F_z).^2, 0, 1/f);   
end    
0 Kommentare
Antworten (1)
  Star Strider
      
      
 am 23 Nov. 2021
        I have no idea what the code does.  
See if this paproximates the desired result — 
nUn = 2000; 
nU2n = 1500; 
nU3n = 200; 
nU4n = 20; 
nVn = nUn; 
nV2n = nU2n; 
nV3n = nU3n; 
nV4n = nU4n; 
dt = 0.001 ; % Timestep
t = 0:dt:1;  % Time interval of the vertical excitation
Om = 405 * 2 * pi / 60; % Frequency of exitation [rpm]
phi = @(t) Om * t;                                                      % <— Is This Part Of The Desired Outcome?
n = 3; % Number of blades 
F_z = @(t) -(nUn*cos(n*phi(t)) + nU2n*cos(2*n*phi(t)) + nU3n*cos(3*n*phi(t)) + ...
    + nU4n*cos(4*n*phi(t)) + nVn*sin(n*phi(t)) + nV2n*sin(2*n*phi(t)) + ...
    + nV3n*sin(3*n*phi(t)) + nV4n*sin(4*n*phi(t))); 
% Plot of the evolution fo the vertical excitation 
figure
plot(t, F_z(t)) 
grid
xlabel('t')
ylabel('F_z(t)')
% Computing and plot of PSD 
f = 0:0.1:100;
for k = 1:numel(f)
    F_z_sqMean(k,:) = f * integral(@(t)F_z(t).^2, 0, 1/f(k));   
end
figure
surfc(F_z_sqMean, 'EdgeColor','none')
grid on
set(gca, 'XScale','log', 'YScale','log', 'ZScale','log')
view(115,30)
xlabel('X')
ylabel('Y')
Experiment!  
.
0 Kommentare
Siehe auch
Kategorien
				Mehr zu Spectral Measurements finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



