I am trying to use a different data for my Validation and it is saying that: Training and validation responses must have the same categories. To view the categories of the res
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ramon Miguel Legaspi
am 23 Nov. 2021
Beantwortet: Philip Brown
am 25 Nov. 2021
myfolder = 'C:\Users\Myname\Downloads\fall dataset\rgb';
dataDir = fullfile(myfolder);
imdir = fullfile(dataDir);
myfolder2 = 'C:\Users\Myname\Downloads\Validation';
dataDir2 = fullfile(myfolder2);
imdir2 = fullfile(dataDir2);
imds = imageDatastore(imdir, "IncludeSubfolders",true ,"LabelSource","foldernames");
imds2 = imageDatastore(imdir2,"IncludeSubfolders",true,"LabelSource","foldernames");
numTrainfiles =5172;
numValidfiles = 6598;
[imdsTrain] = splitEachLabel(imds,numTrainfiles,'randomized');
[imdsValidation] = splitEachLabel(imds2,numValidfiles,'randomized');
%definingarchitecture
inputSize = [ 240 320 3];
numClasses = numel(categories(imdsTrain.Labels));
numClasses2 = numel(categories(imdsValidation.Labels));
layers = [
imageInputLayer(inputSize)
convolution2dLayer(5,20)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
%trainetwork
options = trainingOptions('sgdm', ...
'MaxEpochs',4, ...
'MiniBatchSize',64,...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
YPred = classify(net,imdsValidation);
yvalidation = imdsValidation.Labels;
accuracy = mean(Ypred == yvalidation);
0 Kommentare
Akzeptierte Antwort
Philip Brown
am 25 Nov. 2021
It's likely that your training and validation folders contain different folder names, and those are being used as the class labels. For example, your training set has labels A, B, and C, but your validation set has labels A, B and D. This means your network never learns to classify into class D during training.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!