plot stream over two spheres
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Shreen El-Sapa
am 19 Nov. 2021
Kommentiert: Shreen El-Sapa
am 20 Nov. 2021
A =[ -4.7107
0.0012
-0.0056
0.0132
-0.0253
0.0435
-0.0689
0.1031
-0.1473
0.2040
-0.2737
0.3607
-0.4647
0.5927
-0.7425
0.9265
-1.1387
1.4014
-1.7014
2.0810
-2.5114
3.0805
-3.7224
4.6475
-5.6872
7.5039
-9.5388
16.4146
-25.4535
14.3236];
B=[ -3.3794
0.0005
-0.0009
0.0006
-0.0003
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000];
C=[ 6.8417
-0.0007
0.0007
-0.0003
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000];
D=[ -4.7100
-0.0012
0.0058
-0.0132
0.0253
-0.0435
0.0689
-0.1032
0.1473
-0.2040
0.2737
-0.3608
0.4648
-0.5928
0.7426
-0.9266
1.1388
-1.4016
1.7016
-2.0813
2.5118
-3.0810
3.7230
-4.6482
5.6881
-7.5050
9.5403
-16.4171
25.4574
-14.3258];
E=[ -3.3789
-0.0005
0.0009
-0.0006
0.0003
-0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000];
F=[ 6.8407
0.0007
-0.0008
0.0003
-0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000];
a = 1 ; %RADIUS
L=.1;
dd=4;
kappa=1;gam=0.3;arh=1; %a2=1;u2=1;beta1=beta2=1
al=kappa.*(2+kappa)./(gam.*(1+kappa));
alpha1=real(((al.^2+arh.^2)./2+((al.^2+arh.^2).^2-(2.*kappa.*arh.^2./gam).^(1./2))./2).^(1./2));
alpha2=real(((al.^2+arh.^2)./2-((al.^2+arh.^2).^2-(2.*kappa.*arh.^2./gam).^(1./2))./2).^(1./2));
c =-a/L;
b =a/L;
m =a*100; % NUMBER OF INTERVALS
[x,y]=meshgrid([c+dd:(b-c)/m:b],[c:(b-c)/m:b]);
[I, J]=find(sqrt(x.^2+y.^2)<(a-.1));
if ~isempty(I)
x(I,J) = 0; y(I,J) = 0;
end
r=sqrt(x.^2+y.^2);
t=atan2(y,x);
r2=sqrt(r.^2+dd.^2-2.*r.*dd.*cos(t));
zet=(r.^2-r2.^2-dd.^2)./(2.*r2.*dd);
%for i1=1:length(x);
% for k1=1:length(x);
% if sqrt(x(i1,k1).^2+y(i1,k1).^2)>1./L;
% r(i1,k1)=0;r2(i1,k1)=0;
% end
% end
%end
warning off
qr1=0;
for i=2:7
Ai=A(i-1);Bi=B(i-1);Ci=C(i-1);Di=D(i-1);Ei=E(i-1);Fi=F(i-1);
qr1=qr1-(Ai.*r.^(-i-1)+r.^(-3./2).*besselk(i-1./2,r.*alpha1).*Bi+r.^(-3./2).*besselk(i-1./2,r.*alpha2).*Ci).*legendreP(i-1,cos(t))-(Di.*r2.^(-i-1)+r2.^(-3./2).*besselk(i-1./2,r2.*alpha1).*Ei+r2.^(-3./2).*besselk(i-1./2,r2.*alpha2).*Fi).*legendreP(i-1,zet);
end
hold on
[DH1,h1]=contour(x,y,qr1,3,'-k');
%axis square;
title('$(a)$ $\ell=0.1,\;\alpha=1.0$','Interpreter','latex','FontSize',10,'FontName','Times New Roman','FontWeight','Normal')
%%%%%%%%%%%%%%%% $\frac{\textstyle a_1+a_2}{\textstyle h}=6.0,\;
hold on
t3 = linspace(0,2*pi,1000);
h2=0;
k2=0;
rr2=1;
x2 = rr2*cos(t3)+h2;
y2 = rr2*sin(t3)+k2;
set(plot(x2,y2,'-k'),'LineWidth',1.1);
fill(x2,y2,'w')
%axis square;
hold on
t2 = linspace(0,2*pi,1000);
h=dd;
k=0;
rr=2;
x1 = rr*cos(t2)+h;
y1 = rr*sin(t2)+k;
set(plot(x1,y1,'-k'),'LineWidth',1.1);
fill(x1,y1,'w')
%axis square;
axis off
1 Kommentar
Akzeptierte Antwort
Cris LaPierre
am 20 Nov. 2021
qr1 is all NaNs. Assuming the countours are supposed to be your streamlines, you should check your equation. I'm not sure your for loop is doing what you intended. At the least, there is an issue with your calculation.
5 Kommentare
Cris LaPierre
am 20 Nov. 2021
Personally, I use the streamlines function to create streamlines, not contour. However, even with streamlines, you will need to calculate and input the vector field components u and v.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Legend finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!