I have initial value problem that I have to write the right side into a vector function
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have DEs that I need to write into a vector function and use
ode45
to approximate the solution for the initial value problem on the interval 0 < t < 12. This is what I have so far
w = @(t,y) 5 + (z/5) - ((4*y)/(20+3*t))
w1 = @(t,z) ((4*y)/(20+3*t)) - (2*z)/5
[t,y] = ode45(w, [0, 12], 0)
[t,z] = ode45(w1, [0, 12], 20)
0 Kommentare
Antworten (1)
Cris LaPierre
am 19 Nov. 2021
Bearbeitet: Cris LaPierre
am 19 Nov. 2021
The hints are in the instructions. You are not solving the problem the way you are asked to.
Because your equations are coupled, you have to solve them simultaneously. To do that, create an odefun that solves both equations. The input (initial conditions) and output (solution of both equations) are vectors. The output must be a column vector.
Adapting it to your case, you could designate y(1) to be y in your equations, and y(2) to be z. As long as the order is consistant and matches your y0 input, it doesn't matter which one is y and which one is z.
3 Kommentare
Cris LaPierre
am 23 Nov. 2021
Just run it. What is it you want to do with the results? Perhaps a plot? See below.
y0 = [0;20];
tspan = [0,12];
[t,y] = ode45(@odefun,tspan,y0);
plot(t,y)
legend('y','z')
function dydt = odefun(t,y)
dydt = zeros (2,1);
dydt(1) = 5 + y(2)/5 - 4*y(1)/(20+3*t);
dydt(2) = 4*y(1)/(20+3*t) - 2*y(2)/5;
end
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!