Evaluation metrics for deep learning model model
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Sushma TV
am 18 Nov. 2021
Kommentiert: Pranjal Kaura
am 26 Nov. 2021
What is the command to be used for computing the evaluation metrics for a deep learning model such as precision, recall, specificity, F1 score.
Should it explicitly computed from the Confusion matrix by using the standard formulas or can it be directly computed in the code and displayed.
Also are these metrics computed on the Validation dataset.
Kindly provide inputs regarding the above.
0 Kommentare
Akzeptierte Antwort
Pranjal Kaura
am 23 Nov. 2021
Bearbeitet: Pranjal Kaura
am 23 Nov. 2021
Hey Sushma,
Thank you for bringing this up. The concerned parties are looking at this issue and will try to roll it in future releases.
Hope this helps!
2 Kommentare
Pranjal Kaura
am 26 Nov. 2021
'perfcurve' is used for plotting performance curves on classifier outputs. To plot a Precision-Recall curve you can set the 'XCrit' (Criterion to compute 'X') and YCrit to 'reca' and 'prec' respectively, to compute recall and precision. You can refer the following code snippet:
[X, Y] = perfcurve(labels, scores, posclass, 'XCrit', 'reca', 'YCrit', 'prec');
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Detection finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!