preparing symbolic ODE for ode45
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Clemens Herrmann
am 11 Nov. 2021
Kommentiert: Star Strider
am 12 Nov. 2021
Consider the following symbolic ODE:
syms gamma(t)
C1 = 2.4
C2 = 3.1
ode = diff(gamma, t, 2) == C1 * sin(gamma) + C2 * cos(diff(gamma))
Now, I want to convert the above expression to the function odefun which I can use with ode45:
function res = odefun(t, gamma)
res = [gamma(2);
2.4*sin(gamma(1)) + 3.1*cos(gamma(2))]
end
Are there ways to automate (parts of) this process? The above ode is only a simple example to illustrate my problem. The ode I'm really trying to solve has way more terms with coefficients.
Thanks
0 Kommentare
Akzeptierte Antwort
Star Strider
am 11 Nov. 2021
Try something like this —
syms gamma(t) T Y
C1 = 2.4
C2 = 3.1
ode = diff(gamma, t, 2) == C1 * sin(gamma) + C2 * cos(diff(gamma))
[VF,Subs] = odeToVectorField(ode)
odefun = matlabFunction(VF, 'Vars',{T,Y})
ic = [0 1];
tspan = [0 10];
[t,omega] = ode45(odefun, tspan, ic);
figure
plot(t, omega)
grid
legend(string(Subs), 'Location','best')
The constants do not have to be specified in the original equations. They can be included as parameters, so for example —
syms gamma(t) T Y C1 C2
ode = diff(gamma, t, 2) == C1 * sin(gamma) + C2 * cos(diff(gamma))
odefun = matlabFunction(VF, 'Vars',{T,Y, [C1,C2]})
ic = [0 1];
tspan = [0 10];
CV = rand(1,2)
[t,omega] = ode45(@(t,omega)odefun(t,omega,CV), tspan, ic);
Now they can be changed in the numeric code (for example in a loop or nested loops) without having to re-derive them each time in the original symbolic code.
.
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!