How to predict housing price using Neural Network Toolbox?

5 Ansichten (letzte 30 Tage)
WT
WT am 10 Okt. 2014
Bearbeitet: WT am 10 Okt. 2014
I would like to predict housing prices using inputs such as distance away from subway, numbers of rooms etc.. which of the 4 wizards ( fitting tool, pattern recognition tool, clustering tool, time series tool) should i use?
Thank You WT Lim

Akzeptierte Antwort

Greg Heath
Greg Heath am 10 Okt. 2014
Use the fitting tool with fitnet
Also, see
help house_dataset
doc house_dataset
help fitnet
doc fitnet
[ x,t ] = house_dataset;
[ I N ] = size(x) % [ 13 506 ]
[ O N ] = size(t) % [ 1 506 ]
MSE00 = mean(var(t',1)) % 84.42
net = fitnet;
rng('default')
[net tr y e ] = train(net,x,t); % e=t-y
NMSE = mse(e)/MSE00 % normalized MSE = 0.071101
R2 = 1-NMSE % Rsquare (See Wikipedia) = 0.9289
% ~ 93% of the target variance is modeled by the net. % Obtain details from the training record
tr = tr
Hope this helps
Thank you for formally accepting my answer
Greg
  2 Kommentare
Greg Heath
Greg Heath am 10 Okt. 2014
Better solutions probably can be obtained by using
1. A different number of hidden nodes
2. A different set of random initial weigts
WT
WT am 10 Okt. 2014
Bearbeitet: WT am 10 Okt. 2014
Thank you for replying. Can i still use fitting tool with fitnet when the inputs are dependent on time?

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by