How can i call an equation and it's derivative inside a matlab function?
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ömer Utku Örengül
am 7 Nov. 2021
Bearbeitet: Ömer Utku Örengül
am 8 Nov. 2021
As a newbie, i like to ask a simple question. I am trying to impliment a newton-rapson method for a simple equation as an example. I create a different matlab function from main function for the equation and call it inside the main function. However when I try to call the functions derivative it gives an error. I am aimin to not to take the derivative inside the main function for optimization concerns. I did try different methods but they give errors all the same.
function nr(x0,TC)
% TC is given in terms of percentage!
if nargin<2, x0=0; TC=10^-4;end
error=TC+1; i=0;
x(1)=x0;
while(error>TC)
x(i+2)=x(i+1)-f(x(i+1))/fd(x(i+1));
error=100*abs((x(i+2)-x(i+1))/x(i+2));
i=i+1;
end
fprintf('After %d iterations an approximate root is %f',i,x(i));
end
function [fx]=f(x)
fx=exp(-x)-x;
end
function fd=fd(x)
% syms x %These parts where i need help.
% fx=exp(-x)-x;
% fd=matlabFunction(diff(fx))
fd=-exp(-x)-1;
end
0 Kommentare
Akzeptierte Antwort
Weitere Antworten (1)
Alan Stevens
am 7 Nov. 2021
Like this, perhaps:
% TC is given in terms of percentage!
x0=0; TC=10^-4;
error=TC+1; i=0;
x(1)=x0;
while(error>TC)
[fx, fd] = f(x(i+1));
x(i+2)=x(i+1)-fx/fd;
error=100*abs((x(i+2)-x(i+1))/x(i+2));
i=i+1;
end
fprintf('After %d iterations an approximate root is %f',i,x(i));
function [fx, fd]=f(x)
fx=exp(-x)-x;
fd = -exp(-x)-1;
end
3 Kommentare
Walter Roberson
am 7 Nov. 2021
Bearbeitet: Walter Roberson
am 8 Nov. 2021
There are two notable diff() functions. One of them only applies if the first parameter is symbolic or symbolic function.
syms x
fd = matlabFunction(diff(f(x),x))
function [fx]=f(x)
fx=exp(-x)-x;
end
Alan Stevens
am 8 Nov. 2021
Bearbeitet: Alan Stevens
am 8 Nov. 2021
You could always try something like this:
% TC is given in terms of percentage!
fx = @(x) exp(-x)-x;
dx = 10^-10; % Choose a suitably small value
fd = @(x) (fx(x+dx) - fx(x))/dx;
x0=0; TC=10^-4;
error=TC+1; i=0;
x(1)=x0;
while(error>TC)
x(i+2)=x(i+1)-fx(x(i+1))/fd(x(i+1));
error=100*abs((x(i+2)-x(i+1))/x(i+2));
i=i+1;
end
fprintf('After %d iterations an approximate root is %f',i,x(i));
but, if you have the Symbolic Maths package, Walter's suggestion is best.
Siehe auch
Kategorien
Mehr zu Number Theory finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!