- Data Points: Define your data points using vectors x and y.
- spline Function: This MATLAB function computes the cubic spline coefficients for the given data.
- ppval Function: This function evaluates the piecewise polynomial (spline) at the specified points in x_dense.
- Plotting: The plot function is used to visualize the original data points and the fitted spline curve.
Does anyone have the matlab code for parametric cubic splines caculation?
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello every body. I am working on a project which needs to estimate the coefficinets of parametric cubic spline from some data points. I will be thankful if some body send the related codes to me.
0 Kommentare
Antworten (1)
Hornett
am 4 Sep. 2024
% Example data points
x = [0, 1, 2, 3, 4, 5];
y = [0, 1, 0, 1, 0, 1];
% Fit a cubic spline to the data
cs = spline(x, y);
% Generate a dense set of x values for plotting the spline
x_dense = linspace(min(x), max(x), 100);
y_dense = ppval(cs, x_dense);
% Plotting the original data points and the fitted spline
figure;
plot(x, y, 'ro', 'MarkerFaceColor', 'r', 'DisplayName', 'Data Points'); % Original data points
hold on;
plot(x_dense, y_dense, 'b-', 'DisplayName', 'Cubic Spline'); % Cubic spline
legend show;
xlabel('x');
ylabel('y');
title('Cubic Spline Fitting');
grid on;
Explanation:
Replace x and y with your actual data points. This code will fit a cubic spline to your data and display the result in a plot. If you have any specific requirements or need further details, feel free to ask!
0 Kommentare
Siehe auch
Kategorien
Mehr zu Splines finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!