Why does transforming transfer matrix into complex vector transfer function lead to NaN ?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I am currently trying to transform my transfer matrix into compex vector form. The following picture shows how it is theoretically done.

My
is Z_2 and has quite a high order. So when I try to use eq. (F2) to get
Matlab returns Z_2_cmplx = NaN. Here is my code:


%% Calculation of Transfer Function
% Parameters
Lf_1 = 5.6e-3;
Rf_1 = 0.1;
Cf_1 = 1.61e-05;
L_1 = 1.46e-3 ;
R_1 = 0.053;
wn = 2*pi*50;
Kpc_1 = 35.839999999999996;
Kic_1 = 8.789333333333335e+02;
Kpv_1 = 0.027560488364344;
Kiv_1 = 12.664025834171640;
F_i = 0.9;
% Calculating Transfer Functions
s = tf('s');
Z_PIi = (Kpc_1 + Kic_1 * 1/s) ;
Z_CDi = (-wn*Lf_1) * [0 -1;1 0];
Z_inner = (Z_PIi + (s*Lf_1 + Rf_1))*[1 0;0 1] + (wn*Lf_1)*[0 -1;1 0] + Z_CDi;
Z_inner_inv = inv(Z_inner);
G_I = Z_PIi / Z_inner;
Z_PIv = 1/(G_I * ((Kpv_1 + Kiv_1 * 1/s) * [1 0;0 1]));
Z_PIv_inv = inv(Z_PIv); %Removes extra s
Z_CDv = -1/((wn*Cf_1*[0 -1;1 0])*G_I);
Z_CDv_inv = inv(Z_CDv);
Z_parallel_inv = Z_PIv_inv + Z_CDv_inv + [s*Cf_1 -wn*Cf_1;wn*Cf_1 s*Cf_1] + Z_inner_inv; %equal to Zinner//Zpar mentioned in the notes
Z_parallel = 1/Z_parallel_inv;
Z_1 = Z_parallel/Z_PIv;
Z_ov = [R_1, -wn*Lv_1;
wn*Lv_1, R_1];
Z_Fi = -Z_parallel / inv(G_I)*F_i;
%% Transformation into complex vector form
Z_2 = Z_parallel + Z_Fi + (Z_ov * Z_1);
Z_2_cmplx = (Z_2(1,1)+Z_2(2,2))/2 + 1i * (Z_2(2,1)+Z_2(1,2))/2 % This yields NaN :/
Can anyone please help me with this? I am really out of ideas on how to solve this issue.
Thanks a lot!!!!
Merve
2 Kommentare
Paul
am 27 Okt. 2021
Can't run the code because, variable Lv_1 is undefined.
Also, the expression for Z_2_cmplx doesn't follow the equation in the picture. It should be
Z_2_cmplx = (Z_2(1,1)+Z_2(2,2))/2 + 1i * (Z_2(2,1) - Z_2(1,2))/2
Because Z_2_cmplx is supposed to be G_dq_plus (I think).
Akzeptierte Antwort
Paul
am 27 Okt. 2021
Recreating the result
%% Calculation of Transfer Function
% Parameters
Lf_1 = 5.6e-3;
Rf_1 = 0.1;
Cf_1 = 1.61e-05;
L_1 = 1.46e-3 ;
R_1 = 0.053;
Lv_1 = (5.6e-3)*3;
wn = 2*pi*50;
Kpc_1 = 35.839999999999996;
Kic_1 = 8.789333333333335e+02;
Kpv_1 = 0.027560488364344;
Kiv_1 = 12.664025834171640;
F_i = 0.9;
% Calculating Transfer Functions
s = tf('s');
Z_PIi = (Kpc_1 + Kic_1 * 1/s) ;
Z_CDi = (-wn*Lf_1) * [0 -1;1 0];
Z_inner = (Z_PIi + (s*Lf_1 + Rf_1))*[1 0;0 1] + (wn*Lf_1)*[0 -1;1 0] + Z_CDi;
Z_inner_inv = inv(Z_inner);
G_I = Z_PIi / Z_inner;
Z_PIv = 1/(G_I * ((Kpv_1 + Kiv_1 * 1/s) * [1 0;0 1]));
Z_PIv_inv = inv(Z_PIv); %Removes extra s
Z_CDv = -1/((wn*Cf_1*[0 -1;1 0])*G_I);
Z_CDv_inv = inv(Z_CDv);
Z_parallel_inv = Z_PIv_inv + Z_CDv_inv + [s*Cf_1 -wn*Cf_1;wn*Cf_1 s*Cf_1] + Z_inner_inv; %equal to Zinner//Zpar mentioned in the notes
Z_parallel = 1/Z_parallel_inv;
Z_1 = Z_parallel/Z_PIv;
Z_ov = [R_1, -wn*Lv_1;
wn*Lv_1, R_1];
Z_Fi = -Z_parallel / inv(G_I)*F_i;
Z_2 = Z_parallel + Z_Fi + (Z_ov * Z_1);
Z_2_cmplx = (Z_2(1,1)+Z_2(2,2))/2 + 1i * (Z_2(2,1)-Z_2(1,2))/2 % This yields NaN :/
Look at the coefficients of the numerator and denominator of Z_2(1,1). They are enormous, here's the five largest. Same thing with Z_2(2,2)
[num,den] = tfdata(Z_2(1,1));
sortnum = sort(num{:});
sortden = sort(num{:});
sortnum(end-5:end)
sortden(end-5:end)
When Z_2(1,1) and Z_2(2,2) are combined, problems result with the coefficients getting too large.
[num,den] = tfdata(Z_2(1,1)+Z_2(2,2));
any(isinf(num{:}))
any(isinf(den{:}))
There may be a better way to do all that transfer function manipulation. Are those equations derived from a block diagram?
6 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Characters and Strings finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!