What does this error message mean?
16 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I've got two vectors:
times =
0 0.0005 0.0050 0.0500 0.5000 5.0000
mittel =
0 2.0505 5.7940 8.8363 14.1563 35.6821
I would like to fit two functions to these vectors:
func1 = 'y ~ b0*(x + b1)^(1/2)';
fitresult = NonLinearModel.fit(times,mittel,func1,[ 2.775e+06 0.008033 ]);
and
func2 = 'y ~ b0*(x + b1)^(1/3)';
fitresult2 = NonLinearModel.fit(times,mittel,func2,[2.1e+01 0 ]);
The first works absolutly fine, but the second gives me an error I don't understand:
Error using internal.stats.getscheffeparam>ValidateParameters (line 182)
If non-empty, JW must be a numeric, real matrix.
Error in internal.stats.getscheffeparam (line 110)
[J,VF,VP,JW,Intopt,TolSVD,TolE,VQ,usingJ] =
ValidateParameters(J,VF,VP,JW,Intopt,TolSVD,TolE,VQ,allowedIntopt);
Error in nlinfit (line 340)
sch =
internal.stats.getscheffeparam('WeightedJacobian',J(~nans,:),'Intopt','observation','VQ',VQ);
Error in NonLinearModel/fitter (line 1121)
[model.Coefs,~,J_r,model.CoefficientCovariance,model.MSE,model.ErrorModelInfo,~]
= ...
Error in classreg.regr.FitObject/doFit (line 219)
model = fitter(model);
Error in NonLinearModel.fit (line 1484)
model = doFit(model);
0 Kommentare
Antworten (3)
Sean de Wolski
am 3 Okt. 2014
For some reason the model is returning an imaginary component. I would contact tech support, that error message is useless.
Matt J
am 3 Okt. 2014
Bearbeitet: Matt J
am 3 Okt. 2014
In addition to the need for nthroot(q,3) instead of q^(1/3), your model equations are non-differentiable w.r.t. b1. This makes me wonder if the Jacobian calculations are creating trouble.
I recommend FMINSPLEAS ( Download ) for your problem, since it does not rely on differentiability. Also, it can take advantage of the fact your model is linear w.r.t. b0.
Star Strider
am 3 Okt. 2014
Bearbeitet: Star Strider
am 3 Okt. 2014
For whatever reason, nlinfit does not have a problem with either one:
func1 = @(b,x) b(1).*(x + b(2)).^(1/2);
func2 = @(b,x) b(1).*(x + b(2)).^(1/3);
B1 = nlinfit(times, mittel, func1, [ 2.775e+06 0.008033 ])
B2 = nlinfit(times, mittel, func2, [2.1e+01 0 ])
producing:
B1 =
16.2925e+000 47.9075e-003
B2 =
20.5786e+000 -850.3513e-021i 6.1977e-012 +156.4066e-024i
but it returns complex parameter estimates for ‘B2’, although with negligible imaginary components.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!