extend a optimization function in a loop
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I want to create some point that distance beteen each two point must not be exceed from a specific value and at the same time these points must be close to each other as more as possible. I use spherical coordinate and wrote this code(for two point). as in each itration a "squre" term adds to the "fun", what's the best way to develope this code for any arbitrary number of point (for example 300 point) without repeating "elseif" loop . I atached my code and "nonlcon" functions
clc
clear
X(1) = 0;
Y(1) = 0;
Z(1) = 0;
for i=2:3
if i == 2
options = optimoptions('fmincon','MaxFunctionEvaluations',10000,'MaxIterations',5000);
multiopts = {'MaxIterations','Algorithm','MaxFunctionEvaluations'};
options2 = resetoptions(options,multiopts);
fun = @(x)sqrt( (x(1)*cos(x(2))*sin(x(3))-X(i-1))^2 + (x(1)*sin(x(2))*sin(x(3))-Y(i-1))^2 + (x(1)*cos(x(3))-Z(i-1))^2 );
lb = [2,0,0];
ub = [2,2*pi,2*pi];
x0 = [2,4.706221831,3.166020255];
A = [];
b = [];
Aeq = [];
beq = [];
nonlcon = @distance;
[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
X(i) = x(1)*cos(x(2))*sin(x(3));
Y(i) = x(1)*sin(x(2))*sin(x(3));
Z(i) = x(1)*cos(x(3));
ROH(i) = x(1);
THETA(i) = x(2);
PHI(i) = x(3);
elseif i==3
options = optimoptions('fmincon','MaxFunctionEvaluations',10000,'MaxIterations',5000);
multiopts = {'MaxIterations','Algorithm','MaxFunctionEvaluations'};
options2 = resetoptions(options,multiopts);
fun = @(x)( sqrt((x(1)*cos(x(2))*sin(x(3))-X(i-1))^2 + (x(1)*sin(x(2))*sin(x(3))-Y(i-1))^2 + (x(1)*cos(x(3))-Z(i-1))^2) + sqrt((x(1)*cos(x(2))*sin(x(3))-X(i-2))^2 + (x(1)*sin(x(2))*sin(x(3))-Y(i-2))^2 + (x(1)*cos(x(3))-Z(i-2))^2) );
lb = [2,0,0];
ub = [2,2*pi,2*pi];
x0 = [2,3.743600534,2.108470198];
A = [];
b = [];
Aeq = [];
beq = [];
t = i;
nonlcon = @(x)distance2(x, X, Y, Z, t);
[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
X(i) = x(1)*cos(x(2))*sin(x(3));
Y(i) = x(1)*sin(x(2))*sin(x(3));
Z(i) = x(1)*cos(x(3));
ROH(i) = x(1);
THETA(i) = x(2);
PHI(i) = x(3);
end
end
3 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Direct Search finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!