Problem with solving discrete element method using leap frog method
15 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Thin Rupar Win
am 21 Okt. 2021
Kommentiert: Thin Rupar Win
am 21 Okt. 2021
Dear Sir or Madam,
I am new to writing matlab programming by using Discrete element method using leap frog algorithm. I got many error coming from my program. Can you all suggest me how to correct them with your all idea? Please let me hear your reply.
n_part=4;
kn=5;
kt=2/7*kn;
m=0.3;
g=9.81;
rad(1:n_part)=0.5;
v_init=0.5;
y=zeros();
% testing i_particle=1:n_part;
% testing j_particle=n_part+1:2*n_part;
position_x(1,1:n_part)=0.05;
theta=2*pi*rand(size(position_x));
velocity_x=v_init*sin(theta);
position_y(1,1:n_part)=0.05;
velocity_y=v_init*cos(theta);
timestep=100;
dt=0.001;
acceleration_x(:,1:n_part)=zeros();
acceleration_y(:,1:n_part)=zeros();
Fn=zeros();
Fn_i=zeros();
Fn_j=zeros();
v_half_x(1,1:n_part)=zeros();
v_half_y(1,1:n_part)=zeros();
for n=1:n_part
for k=2:timestep
% position_x
v_half_x(k,n)=velocity_x(k-1,n)+0.5*dt*acceleration_x(k-1,n);
position_x(k,n)=position_x(k-1,n)+v_half_x(k-1,n)*dt;
% position_y
v_half_y(k,n)=velocity_y(k-1,n)+0.5*dt*acceleration_y(k-1,n);
position_y(k,n)=position_y(k-1,n)+v_half_y(k-1,n)*dt;
for i=1:n_part
for j=i+1:n_part
if i>j
% real position & distance
lx=position_x(k-1,i)-position_x(k-1,j);
ly=position_y(k-1,i)-position_y(k-1,j);
root_xy=sqrt(ly^2+ly^2);
% force calculation
Fn=kn*root_xy^1.5;
Fn_i=Fn_i+Fn;
Fn_j=Fn_j+Fn;
% acceleration term
acceleration_x(k,:)=Fn_i./m;
acceleration_y(k,:)=Fn_j./m;
end
end
end
velocity_y(k,n)=v_half_y(k-1,n)+0.5*dt*acceleration_y(k-1,n);
velocity_x(k,n)=v_half_x(k-1,n)+0.5*dt*acceleration_x(k-1,n);
end
end
0 Kommentare
Akzeptierte Antwort
Alan Stevens
am 21 Okt. 2021
The following gets the code working, but I've no idea if the results are meaningful!!
n_part=4;
kn=5;
kt=2/7*kn;
m=0.3;
g=9.81;
rad(1:n_part)=0.5;
v_init=0.5;
y=0;
% testing i_particle=1:n_part;
% testing j_particle=n_part+1:2*n_part;
position_x(1,1:n_part)=0.05;
theta=2*pi*rand(size(position_x));
velocity_x=v_init*sin(theta);
position_y(1,1:n_part)=0.05;
velocity_y=v_init*cos(theta);
timestep=100;
dt=0.001;
acceleration_x=zeros(timestep,n_part); %%%%%%%%%%%%%%
acceleration_y=zeros(timestep,n_part); %%%%%%%%%%%%%%
Fn=0;
Fn_i=0;
Fn_j=0;
v_half_x=zeros(timestep,n_part); %%%%%%%%%%%%%%
v_half_y=zeros(timestep,n_part); %%%%%%%%%%%%%%
for n=1:n_part
for k=2:timestep
% position_x
v_half_x(k,n)=velocity_x(k-1,n)+0.5*dt*acceleration_x(k-1,n);
position_x(k,n)=position_x(k-1,n)+v_half_x(k-1,n)*dt;
% position_y
v_half_y(k,n)=velocity_y(k-1,n)+0.5*dt*acceleration_y(k-1,n);
position_y(k,n)=position_y(k-1,n)+v_half_y(k-1,n)*dt;
for i=1:n_part
for j=i+1:n_part
%if i>j %%%%% i CANNOT be greater than j as you %%%%%%
%%%%% set j to be i+1 upwards! %%%%%%
lx=position_x(k-1,i)-position_x(k-1,j);
ly=position_y(k-1,i)-position_y(k-1,j);
root_xy=sqrt(ly^2+ly^2);
% force calculation
Fn=kn*root_xy^1.5;
Fn_i=Fn_i+Fn;
Fn_j=Fn_j+Fn;
% acceleration term
acceleration_x(k,:)=Fn_i./m;
acceleration_y(k,:)=Fn_j./m;
% end
end
end
velocity_y(k,n)=v_half_y(k-1,n)+0.5*dt*acceleration_y(k-1,n);
velocity_x(k,n)=v_half_x(k-1,n)+0.5*dt*acceleration_x(k-1,n);
end
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Matrix Computations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!