Empty sym: 0-by-1

3 Ansichten (letzte 30 Tage)
Alessio Falcone
Alessio Falcone am 19 Okt. 2021
Kommentiert: Alessio Falcone am 19 Okt. 2021
Hi everyone !
I have some problems with a system of equations that I can't manage to solve. Could you please help me ?
Tc=400;
Pc=35;
R=0.0821;
Z=0.34;
syms Vc a b c;
X=R*Tc*(1-c)/(Vc)-(a*b*(c^2)/(Vc^2))-(R*Tc/b)*log(1-((c*b)/Vc))-Pc;
eqn1=R*Tc*(1-c)/(Vc)-(a*b*(c^2)/(Vc^2))-(R*Tc/b)*log(1-((c*b)/Vc))-Pc==0
eqn2=diff(X,Vc)==0
eqn3=diff(X,Vc,2)==0
eqn4=(Pc*Vc)/(R*Tc)-Z==0
sol=vpasolve([eqn1,eqn2,eqn3,eqn4],[a,b,c,Vc]);
Vc=sol.Vc
a=sol.a
b=sol.b
c=sol.c
Could you please help me ?

Akzeptierte Antwort

Walter Roberson
Walter Roberson am 19 Okt. 2021
Q = @(v) sym(v);
Tc = Q(400);
Pc = Q(35);
R = Q(0.0821);
Z = Q(0.34);
syms Vc a b c;
%assume([b, c], 'real')
assumeAlso(b ~= 0 & c ~= 0)
X = R*Tc*(1-c)/(Vc)-(a*b*(c^2)/(Vc^2))-(R*Tc/b)*log(1-((c*b)/Vc))-Pc;
eqn1 = R*Tc*(1-c)/(Vc)-(a*b*(c^2)/(Vc^2))-(R*Tc/b)*log(1-((c*b)/Vc))-Pc == 0
eqn1 = 
eqn2 = diff(X,Vc) == 0
eqn2 = 
eqn3 = diff(X,Vc,2) == 0
eqn3 = 
eqn4 = (Pc*Vc)/(R*Tc)-Z == 0
eqn4 = 
eqns = simplify([eqn1, eqn2, eqn3, eqn4])
eqns = 
Vc_sol = solve(eqns(end), Vc)
Vc_sol = 
eqns2 = simplify(subs(eqns(1:end-1), Vc, Vc_sol))
eqns2 = 
partial_a = solve(eqns2(2), a)
partial_a = 
eqns3 = simplify(subs(eqns2([1 3:end]), a, partial_a))
eqns3 = 
partial_b = solve(eqns3(2), b, 'returnconditions', true)
partial_b = struct with fields:
b: [2×1 sym] parameters: [1×0 sym] conditions: [2×1 sym]
partial_b.b
ans = 
partial_b.conditions
ans = 
eqns4_1 = (subs(eqns3([1 3:end]), b, partial_b.b(1)))
eqns4_1 = 
eqns4_2 = (subs(eqns3([1 3:end]), b, partial_b.b(2)))
eqns4_2 = 
sol_c_1 = vpasolve(eqns4_1, c)
sol_c_1 = Empty sym: 0-by-1
sol_c_2 = vpasolve(eqns4_2, c)
sol_c_2 = 
141.68652558079973320034185988983
full_c = sol_c_2
full_c = 
141.68652558079973320034185988983
full_b = subs(partial_b.b(2), c, full_c)
full_b = 
0.00017449682895104484527054335897185
full_a = subs(subs(partial_a, b, partial_b.b(2)), c, full_c)
full_a = 
19.294808147837450107863804722783
full_Vc = Vc_sol
full_Vc = 
sol = [full_a, full_b, full_c, full_Vc]
sol = 
subs([eqn1, eqn2, eqn3, eqn4], [a, b, c, Vc], sol)
ans = 
vpa(ans)
ans = 
So the solution works to within round-off error.
  3 Kommentare
Alessio Falcone
Alessio Falcone am 19 Okt. 2021
Alessio Falcone
Alessio Falcone am 19 Okt. 2021
Thank you very much Mr. Roberson

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by