how to compare the class of input and output,and display the misclassification,how much percentage it is classified properly
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
x1 x2 class
a= -1.7986 -1.6730 1.0000
-1.0791 -0.5937 1.0000
-0.5995 0.7556 1.0000
1.0791 -1.4032 1.0000
0.1199 0.2159 1.0000
0.3597 0.4857 -1.0000
-0.3597 1.5651 -1.0000
0.5995 0.4857 -1.0000
0.1199 -0.3238 -1.0000
1.5588 0.4857 -1.0000
result=x1 x2 wx-gamma class
-1.7986 -1.6730 0.8068 1.0000
-1.0791 -0.5937 0.3781 1.0000
-0.5995 0.7556 -0.0706 -1.0000
1.0791 -1.4032 0.1382 1.0000
0.1199 0.2159 -0.0808 -1.0000
0.3597 0.4857 -0.2004 -1.0000
-0.3597 1.5651 -0.3298 -1.0000
0.5995 0.4857 -0.2503 -1.0000
0.1199 -0.3238 0.0588 1.0000
1.5588 0.4857 -0.4500 -1.0000
0 Kommentare
Antworten (1)
Ahmed
am 30 Sep. 2014
To just get the accuracy it is only required to count the number of matches and divide by the total number of observations:
acc = sum(a.class == result.class)/size(a.class,1),
However, you should consider having a look at the confusion matrix as well:
cfMat = confusionmat(a.class,result.class),
acc = sum(diag(cfMat))/sum(cfMat(:)),
Then print the result nicely:
fprintf('Accuracy: %.1f%%\n',100*acc);
In addition, investigating some sort of performance curve is also helpful:
[FPR,TPR,~,AUC] = perfcurve(a.class, result.wx_gamma,1);
plot(FPR,TPR);
axis('equal');
axis([0 1 0 1]);
hold on; grid on;
line([0 1],[0 1]);
hold off;
xlabel('FPR'); ylabel('TPR');
0 Kommentare
Siehe auch
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!