Calculate the Median of the results from 100 Simulations

2 Ansichten (letzte 30 Tage)
CMatlabWold
CMatlabWold am 13 Okt. 2021
Kommentiert: CMatlabWold am 14 Okt. 2021
Hi. I have a code where I am running a Random Forest regression. I am running it 100 times. However, I am having difficulty calculating the median of the 100 trials.
The result I am looking for is located in the variable designated "impOOB".
For each run, there should be values in impOOB variable for 5 columns. For instance:
0.427417559041683 0.00894308188405568 0.141297948087486 0.222153283589539 0.200188127397237
For 100 runs of column 1, I need the median. The same for column 2, and so forth.
My code is as follows:
n = 100;
result = zeros(n,5);
for k=1:n
X = readtable('TOPOonly.xlsx','PreserveVariableNames',true)
Y = readtable('TotalComplaintsRF.xlsx','PreserveVariableNames',true)
t = templateTree('NumVariablesToSample','all',...
'PredictorSelection','interaction-curvature','Surrogate','on');
Mdl = fitrensemble(X,Y,'Method','Bag','NumLearningCycles',200, ...
'Learners',t);
yHat = oobPredict(Mdl);
R2 = corr(Mdl.Y,yHat)^2
impOOB = oobPermutedPredictorImportance(Mdl);
impOOB(impOOB<0) = 0;
impOOB = impOOB./sum(impOOB)
result(k) =
end
I'll attach the files as well. I appreciate very much any help with this.

Akzeptierte Antwort

Matt J
Matt J am 14 Okt. 2021
Bearbeitet: Matt J am 14 Okt. 2021
impOOB=rand(100,5)
impOOB = 100×5
0.7604 0.5152 0.7196 0.2418 0.5420 0.8386 0.3787 0.4701 0.4692 0.7572 0.9929 0.0561 0.2087 0.1176 0.9434 0.7796 0.2491 0.1337 0.1499 0.9048 0.3695 0.1500 0.6826 0.4575 0.4751 0.6069 0.1207 0.8111 0.5832 0.3273 0.9885 0.2647 0.1840 0.9606 0.0610 0.1243 0.3249 0.5171 0.1649 0.9400 0.7085 0.7869 0.5282 0.5472 0.4634 0.7656 0.4034 0.7932 0.8618 0.5136
median(impOOB,1)
ans = 1×5
0.4813 0.4997 0.4696 0.4513 0.5518
  3 Kommentare
Matt J
Matt J am 14 Okt. 2021
n = 100;
result = zeros(n,5);
for k=1:n
X = readtable('TOPOonly.xlsx','PreserveVariableNames',true)
Y = readtable('TotalComplaintsRF.xlsx','PreserveVariableNames',true)
t = templateTree('NumVariablesToSample','all',...
'PredictorSelection','interaction-curvature','Surrogate','on');
Mdl = fitrensemble(X,Y,'Method','Bag','NumLearningCycles',200, ...
'Learners',t);
yHat = oobPredict(Mdl);
R2 = corr(Mdl.Y,yHat)^2
impOOB = oobPermutedPredictorImportance(Mdl);
impOOB(impOOB<0) = 0;
result(k,:) = impOOB./sum(impOOB);
end
median(result,1)
CMatlabWold
CMatlabWold am 14 Okt. 2021
It works. Thank you very much

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Just for fun finden Sie in Help Center und File Exchange

Produkte


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by