Function Approximation and Interpolation
12 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Sardor Butunboev
am 11 Okt. 2021
Beantwortet: David Hill
am 11 Okt. 2021
Given: f(x) = exp(-x^2) on the interval [-1; 1].
Need to:
- Approximate f(x) by a 9-degree monomial basis polynomial interpolant with equidistant nodes. Proceed as follows:
1.1. create a vector x containing the n = 9 interpolation nodes.
1.2. use the function 'vander' to create the interpolation matrix G.
1.3. compute yi = f(xi) at the n interpolation nodes.
1.4. compute the n basis coefficients c.
2. Evaluate the accuracy of the interpolant, say f1, as follows:
2.1. Use the Matlab function 'polyval' to evaluate f1 for 100 evenly distributed points on [-1; 1].
2.2. Compare these interpolated values with the 'true' values of f.
2.3. Plot the approximation error.
So far, could this. But no idea whether they are correct or not. Don't even understand what should do in 2.2 and 2.3
f = @(x) exp(-x.^2);
n = 9;
y = linspace(-1, 1, n);
z = [];
for i = 1:length(y)
z(i) = feval(f,y(i));
end
v = fliplr(vander(y));
a = v\z';
b = a(end:-1:1)';
%5
c = linspace(-1,1);
d = polyval(b, c);
p = polyfit(c,d);
0 Kommentare
Akzeptierte Antwort
David Hill
am 11 Okt. 2021
Something like this.
f = @(x) exp(-x.^2);
x = linspace(-1, 1, 9);
G=vander(x);
y=f(x);
c=G\y';
f1=@(x)polyval(c,x);
t=linspace(-1,1,100);
Error=(f(t)-f1(t))./f(t);
plot(t,Error)
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Polynomials finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!