Why is the polyval command giving two different answers?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Why does the polyval operator not work as expected. Is the ans variable not stored as a column vector? Why aren't the second, fifth, and sixth results equal?
>> roots([1,-8,17,2,-24])
ans =
4.0000
3.0000
2.0000
-1.0000
>> polyval([1.-8,17,2,-24],ans)
ans =
-192.0000
-54.0000
-8.0000
-2.0000
>> roots([1,-8,17,2,-24])
ans =
4.0000
3.0000
2.0000
-1.0000
>> x=ans
x =
4.0000
3.0000
2.0000
-1.0000
>> polyval([1,-8,17,2,-24],x)
ans =
1.0e-13 *
0.8882
0.3197
0.0355
0.1421
>> polyval([1,-8,17,2,-24],[2.0000;3.0000;-1.0000;3])
ans =
0
0
0
0
0 Kommentare
Akzeptierte Antwort
Alberto
am 22 Sep. 2014
Instruction roots uses an iterative numeric method to approximate the solution in float arithmetic. What you get is an excellent approximation.
If you need the exact solution you should try a symbolic method:
g = x^4-8*x^3 + 17*x^2 +2*x -24
g =
x^4 - 8*x^3 + 17*x^2 + 2*x - 24
>> sol=solve(g==0)
sol =
2
3
4
-1
1 Kommentar
Matt J
am 23 Sep. 2014
You also may need a symbolic version of polyval, even when you have the exact roots:
>> polyval([1,-8,17,2,-24]/3,[4 3 2 -1])
ans =
1.0e-14 *
0.8882 0.1776 0.1776 0.1776
Siehe auch
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!