How Should Conditional Mean and Variance Model be Changed if Residuals Exhibit Autocorrelation?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Danny
am 21 Sep. 2014
Beantwortet: Roger Wohlwend
am 22 Sep. 2014
I have a time series Y that I know exhibits autocorrelation and heteroscedasticity. Using the estimate function, I fit a conditional mean and variance model to Y. I then use the infer function and get the residuals from the model fit to Y.
Two questions: 1) If the residuals exhibit autocorrelation, how should I change the conditional mean and variance model that was just fit (add more AR or MA lags?)? 2) If the residuals exhibit heteroscedasticity, how should I change the model (add more GARCH or ARCH terms to the variance model?)? Thank you.
0 Kommentare
Akzeptierte Antwort
Roger Wohlwend
am 22 Sep. 2014
It depends on the autocorrelation. If the autocorrelation occurs at a certain lag, then add a MA term at that lag. If the autocorrelation is a several lags, add AR terms. Another method is that you add AR and MA lags until the autocorrelation disapears. Check the T-values of the coefficients and remove those terms with insignificant coefficients. It is a bit of a trial-and-error process. Add terms and see if you can remove the autocorrelation. However, keep an eye on the T-values. The same process applies for removing the heteroscedasticity.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Conditional Variance Models finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!