integral multiple infinite limits
16 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi , i have to solve one more difficult integral...its an integral like this
fun=∫[exp(-u^2)*(∫fun1(v,u,x,Kt)dv)*(∫fun2(v,u,x,Kt)dv]du
The limits are for v[1e-9,Inf] and u[-inf,inf]
I tried to transform the function mydblquad of Mike Hossea http://www.mathworks.com/matlabcentral/answers/14514-double-integral-infinite-limits but i didn't manage to do it..Is there any idea??? Thanks!!!
0 Kommentare
Akzeptierte Antwort
Mike Hosea
am 2 Sep. 2011
Try this:
function q = paris(fun1,fun2,x,Kt)
% q = ∫[exp(-u^2)*(∫fun1(v,u,x,Kt)dv)*(∫fun2(v,u,x,Kt)dv]du
% The limits are 1e-9 <= v < inf and -inf < u < inf.
a = 1e-9;
innerintegral = @(u) ...
arrayfun(@(u1) ... % u1 is always a scalar here.
exp(-u1^2) * ...
quadgk(@(v)fun1(v,u1*ones(size(v)),x,Kt),a,inf) * ...
quadgk(@(v)fun2(v,u1*ones(size(v)),x,Kt),a,inf), ...
u);
q = quadgk(innerintegral,-inf,inf);
3 Kommentare
Mike Hosea
am 2 Sep. 2011
If fun1 and fun2 are m-files, you need to use "@", i.e. paris(@fun1,@fun2,x,Kt). You leave off the "@" when they are instead variables to which you have stored anonymous functions. Note that the way I set it up, fun1 and fun2 are both functions of 4 variables: v, u, x, and Kt.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!