I have a problem with dimensions of vektor and matrix, i do not know why my f vektor is 11x1, it should be 9x1 to be compatible with my matrix A which is 9x9.

2 Ansichten (letzte 30 Tage)
u_exact = @(x) ( 300 * exp(-(x-1).^2) ); % exakt lösning
L = 2;
a = 0; b = L;
ga = 300; gb = 400; % RV
px = @(x) ( 5 + ((1/6) * x.^2) ); %p(x)
p_primx = @(x) ((2/6)*x); %p'(x)
N = 10; % antal delintervall
h = (b-a)/N; % nätsorlek
x = a:h:b; % punkter x_j
p = px(x); % p(x_j)
p_prim = p_primx(x); % p'(x_j)
% Matrisen A
A = zeros( N-1 , N-1 );
for j = 2:(N-2)
A(j,j+1)= -p(j)/h^2-p_prim(j)/(2*h);
A(j,j-1)= -p(j)/h^2+p_prim(j)/(2*h);
A(j,j) = 2*p(j)/h^2 + 1; %q_j = 1.
end
A(1,1) = 1;
A(N-1,N-1)=1;
% A(1,1) = 2*px(x(2))/h^2;
% A(1,2) = -p_primx((x(2)))/h^2;
% A(N-1,N-2) = p_primx((x(N)))/(2 * h) - px(x(2))/h^2;
% A(N-1,N-1) = 2*px(x(N))/h^2;
Q_start = 300*exp(-(((a+h)-(L/2))^2));
Q_slut = 300*exp(-(((b-h)-(L/2))^2));
f = [( 300 * exp(-(x-1).^2) ) ]';
% f(1) = ga;
% f(N-1)=gb;
f(1) = Q_start - (((((p_primx(a+h))/(2*h))-((px(a+h))/(h^2)))*ga));
f(N-1) = Q_slut - ((((-(p_primx(b-h))/(2*h))-((px(b-h))/(h^2)))*gb));
u = A\f;
plot( x , u )
% felet beräknat med trapetsregeln
error = 0;
for j = 1:N
error = error + h/2 * ( ( u_exact(x(j))-u(j) )^2 + ( u_exact(x(j+1))-u(j+1) )^2 );
end
error = sqrt( error )
hold on
fplot( u_exact, [a,b] )
hold off

Antworten (1)

DGM
DGM am 9 Okt. 2021
Bearbeitet: DGM am 9 Okt. 2021
The problem is in how you construct x. This looks to me like a classic fencepost error problem, but it's compounded by the fact that you set N to the matrix size +1 and are using h for both the matrix calculations and the vector construction.
a = 0; b = 2;
N = 10;
h = (b-a)/N;
x = a:h:b
x = 1×11
0 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000
h = (b-a)/(N-2); % is changing this going to mess up usage for matrix calcs?
x = a:h:b
x = 1×9
0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
I'm confused as to why you set N to 10 and then always use N-1. Why not set N to 9 and just use N?
On that note, you'll have to change the terminal index for the error vector loop to N-2.
  2 Kommentare
Ammar Anayi
Ammar Anayi am 9 Okt. 2021
The question states that we must use N-1, we have not come to the error yet, the problem is still within the upper part, the error just a given exaple of how it should be.
DGM
DGM am 9 Okt. 2021
Well if it's dictated that you use N-1, then N would indeed need to be 10, I guess. You'll have to work around that accordingly in order for x to be the right length.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by