Info

Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.

Solving a first order ODE using the Euler backward method (implicit)

5 Ansichten (letzte 30 Tage)
Ibrahim Ali
Ibrahim Ali am 1 Okt. 2021
Geschlossen: Cris LaPierre am 1 Okt. 2021
I'm trying to solve a first order ODE with the initial condition y(5) = 0. To do this, I'm using the Euler backward method, but I'm getting these two errors:
Error using fzero (line 214)
Second argument must be finite.
Error in backwardeuler (line 22)
y(i+1) = fzero(@(Y) y(i) + dt*((2*t(i+1)-4)*exp(-Y)) - Y, y(i), options);
------------------------------------------------------------------------------------
% y_true = log(t^2 -4*t-4); Initial condition y(5) = 0;
% F_ty = @(t,y) (2*t-4)*exp(-y);
dt = 0.01;
t0 = 0;
tf = 3;
t = t0:dt:tf;
y(5) = 0;
% using the formula for backward euler: y(i+1) = y(i) + dt*f(y(i+1),t(i+1))
% we get
%y(i+1) = y(i) + dt*((2*t(i+1)-4)*exp(-y(i+1)));
% setting the LHS equal to zero so we can use fsolve:
% 0 = y(i) + dt*((2*t(i+1)-4)*exp(-y(i+1))) - y(i+1);
% We define y(i+1) = Y, so that
% 0 = y(i) + dt*((2*t(i+1)-4)*exp(-Y)) - Y;
options = optimset('TolX',1e-06);
for i = 1:length(t)-1
y(i+1) = fzero(@(Y) y(i) + dt*((2*t(i+1)-4)*exp(-Y)) - Y, y(i), options);
y_exact(i+1) = log((t(i+1))^2-4*t(i+1)-4);
end
figure(1)
hold on
plot(t,y,'bo')
plot(t,y_exact,'r-')
xlabel('time')
ylabel('y(t)')
title('Backward Euler method vs exact solution')
legend('Backward Euler', 'Exact')

Antworten (0)

Diese Frage ist geschlossen.

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by