Image Normalization before Fine-Tuning a pretrained CNN for image classification
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Andrea Daou
am 20 Sep. 2021
Kommentiert: Andrea Daou
am 27 Sep. 2021
Hello,
Is it possible to directly add an image normalization step, to this training code below, to normalize all the dataset images before training the CNN pretrained model ? I need to train my model with pixel values ranging between 0 and 1 instead of 0 and 255.
imds = imageDatastore(dataset, 'IncludeSubfolders',true,'LabelSource','foldernames')
tbl = countEachLabel(imds);
numClasses = height(tbl);
[trainingSet, testSet] = splitEachLabel(imds, 0.7,'randomize');
I tried to modify the image input layer (Normalization 'rescale-zero-one') of the model but it did not work because this option does not exist effectively ( previous question asked related: https://fr.mathworks.com/matlabcentral/answers/1441834-imageinputlayer-normalization-data-normalization-options?s_tid=srchtitle )
Is there any way to normalize directly images in augmentedImageDatastore ?
augmentedTrainingSet = augmentedImageDatastore(imageSize, ...
trainingSet, 'ColorPreprocessing', 'gray2rgb');
augmentedTestSet = augmentedImageDatastore(imageSize, ...
testSet, 'ColorPreprocessing', 'gray2rgb');
Thank you in advance !! Appreciate any kind of help !
0 Kommentare
Akzeptierte Antwort
yanqi liu
am 26 Sep. 2021
sir, may be you shoud use function handle to define your read image style, pleaes read the follow code
clc; clear all; close all;
dataset = fullfile(matlabroot,'toolbox','matlab');
imds = imageDatastore(dataset,'IncludeSubfolders',true,...
'FileExtensions','.tif',...
'LabelSource','foldernames',....
'ReadFcn',@data_preporcess);
tbl = countEachLabel(imds);
numClasses = height(tbl);
[trainingSet, testSet] = splitEachLabel(imds, 0.7,'randomize');
function data = data_preporcess(file)
data = imread(file);
% ranging between 0 and 1 instead of 0 and 255
data = mat2gray(data);
end
Weitere Antworten (1)
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!