How to plot streamline, streakline and pathlines without using 'streamline streamline, odexx or similar functions in Matlab'
24 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Can someone help me correct my code for tracking centre of vortex and for plotting streamlines, streaklines and pathlines by creating the code and not using Matlab 'streamline' function.
close all;
clear;
clc;
%3(a)
time_steps = 0.01;
t=0:time_steps:100;
total_time_points=length(t);
load('particle_positions.mat')
figure
plot(xp,yp,'k.')
xlabel('X');
ylabel('Y');
for i=1:length(xp)
[x_val(i),y_val(i)]=Euler_scheme(xp(i),yp(i),total_time_points,time_steps);
end
figure
plot(x_val,y_val,'k.')
xlabel('X');
ylabel('Y');
title('Particle positions')
hold on;
% Computing the center of vortex
for i=1:length(xp)/10 -1
x_center(i) = sum(x_val(i*10:i*10+10))/10;
y_center(i) = sum(y_val(i*10:i*10+10))/10;
end
plot(x_center,y_center,'r*')
xlabel('X');
ylabel('Y');
figure
plot(x_center,y_center,'r*')
xlabel('X');
ylabel('Y');
title('Center of Vortex');
function [x_last,y_last]=Euler_scheme(x,y,l_t,h)
for j=1:l_t-1
x(j+1)=x(j)+(h*f(x(j),y(j)));
y(j+1)=y(j)+(h*g(x(j),y(j)));
end
x_last=x(end);
y_last=y(end);
end
function dxdt=f(x,y)
gamma_val = [-2 2 -2 2];
delta = 0.5;
x0 = [-1 1 -1 1];
y0 = [10 10 -10 -10];
dxdt = 0;
for ii=1:size(x0,2)
dxdt = dxdt - gamma_val(ii)/(2*pi)*((y-y0(1,ii))/((x-x0(1,ii))^2+(y-y0(1,ii))^2+delta^2));
end
end
function dydt=g(x,y)
gamma_val = [-2 2 -2 2];
delta = 0.5;
x0 = [-1 1 -1 1];
y0 = [10 10 -10 -10];
dydt = 0;
for ii=1:size(x0,2)
dydt = dydt + gamma_val(ii)/(2*pi)*((x-x0(1,ii))/((x-x0(1,ii))^2+(y-y0(1,ii))^2+delta^2));
end
end
0 Kommentare
Antworten (1)
darova
am 19 Sep. 2021
What about ode45? Streamline is just a trajectory, if you have vector field you can find a solution
[x,y,z] = peaks(20);
[u,v] = gradient(z);
fx = scatteredInterpolant(x(:),y(:),u(:)); % function of X velocity
fy = scatteredInterpolant(x(:),y(:),v(:)); % function of Y velocity
F = @(t,u) [fx(u(1),u(2)); fy(u(1),u(2))]; % ode45 function
quiver(x,y,u,v)
t = 0:.2:2*pi;
[x0,y0] = pol2cart(t,0.5);
for i = 1:numel(x0)
[t,u1] = ode45(F,[0 1],[x0(i)-1.5 y0(i)+0.3]); % find solution for each initial position
line(u1(:,1),u1(:,2),'color','r')
end
0 Kommentare
Siehe auch
Kategorien
Mehr zu Convert Image Type finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!