Non-linear constraints with several input variables in fmincon

3 Ansichten (letzte 30 Tage)
javm6
javm6 am 16 Sep. 2021
Bearbeitet: Matt J am 22 Sep. 2021
Hello everyone,
I am trying to solve the following optimization problem with fmincon:
To do this, I have made the following code:
fun = @(x) x'*L*x;
nonlcon = @(x) consfun(A,B,x);
x = fmincon(fun,x0,[],[],[],[],[],[],nonlcon);
Where ''consfun'' is the following function:
function [c,ceq] = consfun(A,B,x)
c = (norm(A*x,inf)/b)-D);
ceq = [];
end
However, the final solution, x, does not satisfy the non-linear constraint so I wonder if the code is correct in relation to the optimisation problem posed.
Can anyone help me?
Thank you very much for your time!
  1 Kommentar
Alan Weiss
Alan Weiss am 20 Sep. 2021
Did fmincon claim to give a feasible solution? If so, then in what way was the constraint violated? I mean, was consfun(A,B,x) > 0? If not, then you may need to search for a feasible solution. See Converged to an Infeasible Point.
Alan Weiss
MATLAB mathematical toolbox documentation

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Matt J
Matt J am 20 Sep. 2021
Bearbeitet: Matt J am 20 Sep. 2021
Your nonlinear constraints are not differentiable. That doesn't always spell disaster, but it breaks the assumptions of fmincon. Also, since your problem can be reformulated as a quadratic program, it would be better to use quadprog.
[m,n]=size(A);
e=ones(m,1);
Aineq=[A;-A];
bineq=[(B+b*D).*e ; -(B-b*D).*e];
x=quadprog(L,zeros(n,1),Aineq,bineq);
  4 Kommentare
Perry Mason
Perry Mason am 22 Sep. 2021
I meant that the constraint in the original problem of javm6 is defined in terms of the infinity norm.
I reckon your reformulation works if the constraint is defined using euclidean norm, but will this reformulation still work even if the infinity norm is used?
Cheers
Matt J
Matt J am 22 Sep. 2021
Bearbeitet: Matt J am 22 Sep. 2021
The reformulation is equivalent to the original, posted problem with the inf-norm constraints. The inf-norm constraint in the can be re-written as the linear system,
-b*D <= A*x-B <= b*D
or
A*x <= B+b*D
-A*x <= -(B-b*D)

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by