Error in importing trained TensorFlow SavedModel using importTensorFlowNetwork function
15 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Iman Askari
am 8 Sep. 2021
Beantwortet: Anshika Chaurasia
am 14 Sep. 2021
I am trying to import a trained tensoflow neural network model. Initially the trained model is in checkpoint format (ckpt). I was able to convert the ckpt to savedModel (pb) format for use in importTensorFlowNetwork function. While running the function I obtain the following error:
>>
unzip('EXP1_pb_model.zip')
net = importTensorFlowNetwork('EXP1_pb_model');
The python code I used to convert the ckpt to pb is as follow:
import os
import tensorflow as tf
trained_checkpoint_prefix = '/exp_1/model.ckpt'
export_dir = os.path.join('model', 'EXP1_model')
graph = tf.Graph()
with tf.compat.v1.Session(graph=graph) as sess:
# Restore from checkpoint
loader = tf.compat.v1.train.import_meta_graph(trained_checkpoint_prefix + '.meta')
loader.restore(sess, trained_checkpoint_prefix)
# Export checkpoint to SavedModel
builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(export_dir)
builder.add_meta_graph_and_variables(sess,
[tf.saved_model.TRAINING, tf.saved_model.SERVING],
strip_default_attrs=True)
builder.save()
Attached are the both the ckpt and pb models.
I would appericiate any help in resolving this issue.
Thanks
0 Kommentare
Akzeptierte Antwort
Anshika Chaurasia
am 14 Sep. 2021
Hi Iman,
We currently support the import of TF models saved using the Sequential and Funtional Keras Model APIs (https://keras.io/guides/sequential_model/ & https://keras.io/guides/functional_api/ ) . But the models in your case do not use that API to save the model.
The importTensorFlowNetwork look for a graph called "object_graph_def" in the saved model and does not find it if the model was saved as it is in your case (hence the "Unrecognized field" error).
Hope it helps!
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!