exponential curve fit coefficients

8 Ansichten (letzte 30 Tage)
Jamie Williamson
Jamie Williamson am 8 Sep. 2021
Kommentiert: Ravi Narasimhan am 8 Sep. 2021
Is there a way to calculate exponential curve fit coefficients without using the curvefit toolbox??

Antworten (2)

Star Strider
Star Strider am 8 Sep. 2021
Bearbeitet: Star Strider am 8 Sep. 2021
Linearising it by log-transforming the data is not appropriate, because that distorts the errors, making them multiplicative rather than additive.
It is straightforward to do a nonlinear parameter estimation using fminsearch, which is a core-MATLAB function, requiring no toolboxes.
EDIT — (8 Sep 2021 at 15:30)
To illustrate —
x = linspace(0, 5, 25);
y = x.^2 + randn(size(x));
y = abs(y);
objfcn = @(b,x) b(1).*exp(b(2).*x); % Objective Function
B0 = rand(3,1);
[B1,Fval] = fminsearch(@(b) norm(y - objfcn(b,x)), B0) % Nonlinear Iterative Solution
B1 = 3×1
1.4102 0.5850 -1.0206
Fval = 7.3191
Fit1 = objfcn(B1,x);
B2 = polyfit(x, log(y), 1)
B2 = 1×2
0.9478 -0.9879
Fit2 = polyval(B2, x);
Fit2 = exp(Fit2);
figure
subplot(2,1,1)
plot(x, y, '.b')
hold on
plot(x, Fit1, '-r')
hold off
grid
title('Nonlinear Fit')
subplot(2,1,2)
plot(x, y, '.b')
hold on
plot(x, Fit2, '-r')
hold off
grid
title('Linearised Fit')
.
  1 Kommentar
Ravi Narasimhan
Ravi Narasimhan am 8 Sep. 2021
Very interesting. I didn't know this was available in core Matlab. I thought (probably incorrectly) that the OP was looking for a quick and dirty solution where the linearization wasn't a big concern.

Melden Sie sich an, um zu kommentieren.


Ravi Narasimhan
Ravi Narasimhan am 8 Sep. 2021
Bearbeitet: Ravi Narasimhan am 8 Sep. 2021

Kategorien

Mehr zu Interpolation finden Sie in Help Center und File Exchange

Produkte


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by