exponential curve fit coefficients
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Is there a way to calculate exponential curve fit coefficients without using the curvefit toolbox??
0 Kommentare
Antworten (2)
Star Strider
am 8 Sep. 2021
Bearbeitet: Star Strider
am 8 Sep. 2021
Linearising it by log-transforming the data is not appropriate, because that distorts the errors, making them multiplicative rather than additive.
It is straightforward to do a nonlinear parameter estimation using fminsearch, which is a core-MATLAB function, requiring no toolboxes.
EDIT — (8 Sep 2021 at 15:30)
To illustrate —
x = linspace(0, 5, 25);
y = x.^2 + randn(size(x));
y = abs(y);
objfcn = @(b,x) b(1).*exp(b(2).*x); % Objective Function
B0 = rand(3,1);
[B1,Fval] = fminsearch(@(b) norm(y - objfcn(b,x)), B0) % Nonlinear Iterative Solution
Fit1 = objfcn(B1,x);
B2 = polyfit(x, log(y), 1)
Fit2 = polyval(B2, x);
Fit2 = exp(Fit2);
figure
subplot(2,1,1)
plot(x, y, '.b')
hold on
plot(x, Fit1, '-r')
hold off
grid
title('Nonlinear Fit')
subplot(2,1,2)
plot(x, y, '.b')
hold on
plot(x, Fit2, '-r')
hold off
grid
title('Linearised Fit')
.
1 Kommentar
Ravi Narasimhan
am 8 Sep. 2021
Very interesting. I didn't know this was available in core Matlab. I thought (probably incorrectly) that the OP was looking for a quick and dirty solution where the linearization wasn't a big concern.
Ravi Narasimhan
am 8 Sep. 2021
Bearbeitet: Ravi Narasimhan
am 8 Sep. 2021
See the answer to a similar question in:
(corrected link)
0 Kommentare
Siehe auch
Kategorien
Mehr zu Interpolation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!