data normalization for deep learning cnn
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Daniel barth
am 27 Aug. 2021
Kommentiert: Daniel barth
am 2 Sep. 2021
I am converting EEG signals into scalograms and inputing these pictures for trianing a cnn to discrimate distinct waverform patterns. It works great excpt for one problem. Detections will be made of correct patterns regardless of the amplitude of the original signal. That is because the data gets normalized across the pictures. In my analysis I only want to detect large signals not tiny signals. This is critical. I am new to this type of work so my question may seem naive, but is normalization required for the cnn to work? If not, how can it be turned off? Thanks for your thoughts.
0 Kommentare
Akzeptierte Antwort
Kumar Pallav
am 30 Aug. 2021
From my understanding, normalization would normalize all data, and hence, both large and tiny signals get normalized. The output depends on the layers of CNN architecture (convolution filters, normalization layer, activation layers, pooling and so on) and the training options (learning rate, epochs, solvers etc). The output may detect tiny signals due to variety of reasons (less epochs, low or high learning rates). Normalization basically helps in training the data and increase the speed of learning (if you are not normalizing, both test and train data should be not normalized).
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Get Started with Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!