Adding constraints to function plots in 2-D and 3-D
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I am new to Matlab.
I have the code snippet below.
Assume that I want to skip parts of the domain of f, i.e. (x,y), where x^2 + y^2 = c (c is any constant value in my code).
So, I want the mesh function to only plot functional values of the points in the domain of my function, which satisfify the above constraint.
How do I go about editing the code snippet below in order to incorporate the type of constraint defined above?
You timely assistance would be appreciated.
f = @ (x , y ) x .* sin( x .* y );
[X , Y ] = meshgrid (0:.1:5 , pi :.01* pi :2* pi );
Z = f (X , Y );
mesh (X ,Y , Z )
1 Kommentar
Wan Ji
am 27 Aug. 2021
I feel a litlle bit confused of your question, which domain should be skipped?
x^2+y^2<c
or
x^2+y^2>c
Antworten (1)
Wan Ji
am 29 Aug. 2021
Hi,
I have translated the Cartesian to polar system so as to satisfy your requirement
f = @ (x , y ) x .* sin( x .* y );
minR = sqrt(0+pi^2);
maxR = sqrt(5^2+(2*pi)^2);
minTheta = atan2(pi,5);
maxTheta = atan2(2*pi,0);
r = linspace(minR, maxR, 101);
theta = linspace(minTheta, maxTheta, 101);
[R, T] = meshgrid(r, theta);
X = R.*cos(T);
Y = R.*sin(T);
% [X , Y ] = meshgrid (0:.1:5 , pi :.01* pi :2* pi );
Z = f (X , Y );
Z(~(X<=5 & X>=0 & Y<=2*pi & Y>=pi)) = NaN;
mesh (X ,Y , Z )
0 Kommentare
Siehe auch
Kategorien
Mehr zu Sources finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!