Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter. x=t√,y=t2−2t;t=4
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Kevin Thongkham
am 26 Aug. 2021
Beantwortet: Kevin Thongkham
am 27 Aug. 2021
Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter. x=√t, y=t^2−2t; t=4
0 Kommentare
Akzeptierte Antwort
Wan Ji
am 26 Aug. 2021
Bearbeitet: Wan Ji
am 26 Aug. 2021
syms t x0(t) y0(t) x y
x0 = sqrt(t); % parametric equation for x
y0 = t^2-2*t; % parametric equation for y
dx = diff(x0); % dx/dt
dy = diff(y0); % dy/dt
eq = subs(dy,t,4)*(x-subs(x0,4)) - subs(dx,t,4)*(y-subs(y0,4)) % this is the line eqaution eq=0
The answer then becomes
eq =
6*x - y/4 - 10
So 6*x - y/4 - 10 = 0 is the equation of the tangent to the curve at t = 4.
You can also solve it to extract y (in that case, the slope should not be inf)
y = solve(eq, y)
y =
24*x - 40
Weitere Antworten (1)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!