How to Solve for x for 20 functions
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Meteb Mejbel
am 26 Aug. 2021
Kommentiert: Meteb Mejbel
am 26 Aug. 2021
Hi,
I have 4 column vectors (C,V,B and N), each has 20 intial values and they represent 20 spatial points ([C(i), V(i), B(i), N(i)], [C(i+1),V(i+1), B(i+1), N(i+1)]) and so on. I want to solve for x for each point using this function -> K=[(C(i)+x(i))*(V(i)+x(i))]/[(B(i)-x(i))*(N(i)-x(i))] (K is constant) and then get new values for each row in each vector ( C(i_new)=C(i)+x(i), V(i_new)=V(i)+x(i).....etc) and sort them again in new vectors (C_new, V_new, B_new and N_new)
1- So how can I construct this model? I always get confused when I want to do for loops by numel.
2- I was thinking to use vpasolve to get all x. However, I get 2 answers of x since the functons is second order in x. How can I choose first answer of x and use it later to find my next solutions?
Thnaks
0 Kommentare
Akzeptierte Antwort
Wan Ji
am 26 Aug. 2021
You can get symbolic solution by
syms K C V B N X
eq = K*(B-X)*(N-X)-(C+X)*(V+X);
x = solve(eq, X)
and the final process is
K = 1;
% There are two solutions, x1 is the first solution
x1 = @(C,V,B,N) (C + V - (B.^2.*K.^2 + 2*B.*C.*K - 2*B.*K.^2.*N + ...
4*B.*K.*N + 2*B.*K.*V + C.^2 + 2*C.*K.*N + 4*C.*K.*V - 2*C.*V + ...
K.^2.*N.^2 + 2*K.*N.*V + V.^2).^(1/2) + B.*K + K.*N)./(2*(K - 1));
% x1 is the second solution
x2 = @(C,V,B,K) (C + V + (B.^2.*K.^2 + 2*B.*C.*K - 2*B.*K.^2.*N + ...
4*B.*K.*N + 2*B.*K.*V + C.^2 + 2*C.*K.*N + 4*C.*K.*V - 2*C.*V + ...
K.^2.*N.^2 + 2*K.*N.*V + V.^2).^(1/2) + B.*K + K.*N)./(2*(K - 1));
C = rand(20,1); % randomly initialized data
V = rand(20,1);
B = rand(20,1);
N = rand(20,1);
X = x1(C,V,B,N); % choose the first answer of x, you can also choose the second
C_new = sort(C + X);
V_new = sort(V + X);
B_new = sort(B + X);
N_new = sort(N + X);
7 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Conversion Between Symbolic and Numeric finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!