Too many input arguments while solving BVP using bvp4c
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Anshuman Pal
am 21 Aug. 2021
Kommentiert: Star Strider
am 21 Aug. 2021
Hello, I am trying to run the following chunk of code, which integrates a system of 11 ODEs with an eigenvalue to be fixed. I get a 'too many arguments' error on calling the function bvp_RHS(). I don't get why:
phif = 0.1; % total length
phit = 0.05;
alpha = 0.3;
C_init = 1e-2;
solinit = bvpinit(linspace(-phif/2, phif/2, 10), @(x)mat4init(x, phif), C_init);
options = bvpset('Stats','on','RelTol',1e-5);
sol = bvp4c(@bvp_RHS, @(yL,yR)bvp_BC(yL, yR, phit, alpha), solinit, options);
%-------------------------------------------------------------------------
function yinit = mat4init(x, phif)
yinit = [cos(pi/phif*x)
-pi/phif * sin(pi/phif*x)
0.1
0.1
0.1
-0.1
0.1
0
0
0
0
];
end
function dyds = bvp_RHS(y,C)
% Total 2+9=11 variables.
dyds = [ y(2)
-0.5*y(1)^3 - C*y(1) % -0.5*kappa^3 - C*kappa
y(6) % =tx
y(7) % =ty
y(8) % =tz
-y(3) + y(1)*y(9) % =-rx + kappa*nx
-y(4) + y(1)*y(10) % =-ry + kappa*ny
-y(5) + y(1)*y(11) % =-rz + kappa*nz
-y(1)*y(6) % =-kappa*tx
-y(1)*y(7) % =-kappa*ty
-y(1)*y(8) % =-kappa*tz
];
end
%-------------------------------------------------------------------------
function res = bvp_BC(yL, yR, phit, alpha)
% BCs at L and R boundaries, with constraint for eigenvalue C.
% Symmetrised BCs for r and t, so that L and R are at \pm phit/2.
res = [ yL(1)
yR(1)
yL(3)-cos(phit/2) % fix position: rx
yL(4)+sin(phit/2) % fix position: ry
yL(5) % fix position: rz
yR(3)-cos(phit/2) % fix position: rx
yR(4)-sin(phit/2) % fix position: ry
yR(5) % fix position: rz
yL(6)-sin(phit/2)*cos(alpha) % fix slope: tx
yL(7)-cos(phit/2)*cos(alpha) % fix slope: ty
yL(8)-sin(alpha) % fix slope: tz
yR(6)-sin(phit/2)*cos(alpha) % fix slope: tx
];
end
Could someone please advise?
0 Kommentare
Akzeptierte Antwort
Star Strider
am 21 Aug. 2021
The problem with ‘bvp_RHS’ was actually not with it, but with the extra argument to bvpinit. Eliminating that then produced the error that ‘bvp_BC’ needs to return 11 boundary conditions, not 12 as it currently does. So, I commented-out the last one, and the code ran without error.
Check ‘bvp_BC’ and eliminate the extraneous boundary condition, since I might not have eliminated the correct one (I just wanted to see if the code otherwise worked).
phif = 0.1; % total length
phit = 0.05;
alpha = 0.3;
C_init = 1e-2;
solinit = bvpinit(linspace(-phif/2, phif/2, 100), @(x)mat4init(x, phif));
options = bvpset('Stats','on','RelTol',1e-5);
sol = bvp4c(@bvp_RHS, @(yL,yR)bvp_BC(yL, yR, phit, alpha), solinit, options)
figure
plot(sol.x, sol.y)
grid
legend(compose('$y_{%2d}$',1:11), 'Location','bestoutside', 'Interpreter','latex')
%-------------------------------------------------------------------------
function yinit = mat4init(x, phif)
yinit = [cos(pi/phif*x)
-pi/phif * sin(pi/phif*x)
0.1
0.1
0.1
-0.1
0.1
0
0
0
0
];
end
function dyds = bvp_RHS(C,y)
% Total 2+9=11 variables.
dyds = [ y(2)
-0.5*y(1)^3 - C*y(1) % -0.5*kappa^3 - C*kappa
y(6) % =tx
y(7) % =ty
y(8) % =tz
-y(3) + y(1)*y(9) % =-rx + kappa*nx
-y(4) + y(1)*y(10) % =-ry + kappa*ny
-y(5) + y(1)*y(11) % =-rz + kappa*nz
-y(1)*y(6) % =-kappa*tx
-y(1)*y(7) % =-kappa*ty
-y(1)*y(8) % =-kappa*tz
];
end
%-------------------------------------------------------------------------
function res = bvp_BC(yL, yR, phit, alpha)
% BCs at L and R boundaries, with constraint for eigenvalue C.
% Symmetrised BCs for r and t, so that L and R are at \pm phit/2.
res = [ yL(1)
yR(1)
yL(3)-cos(phit/2) % fix position: rx
yL(4)+sin(phit/2) % fix position: ry
yL(5) % fix position: rz
yR(3)-cos(phit/2) % fix position: rx
yR(4)-sin(phit/2) % fix position: ry
yR(5) % fix position: rz
yL(6)-sin(phit/2)*cos(alpha) % fix slope: tx
yL(7)-cos(phit/2)*cos(alpha) % fix slope: ty
yL(8)-sin(alpha) % fix slope: tz
% yR(6)-sin(phit/2)*cos(alpha) % fix slope: tx
];
end
The output doesn’t look very interesting, however if it does what you want, that may not be an issue.
.
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Mathematics and Optimization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!