How to integrate linear system of vectorial equations?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Anshuman Pal
am 20 Aug. 2021
Kommentiert: Star Strider
am 22 Aug. 2021
Hello,
I have the following system of vectorial equations that describe a curve in space r, its tangent vector t and its normal $n$, parametrised by the arc length s:
Suppose I have the function given as a vector of values, as well as initial values of r, t and n. Then is there some simple way (or package) for numerically integrating this system of vectorial equations?
Thank you very much!
1 Kommentar
Akzeptierte Antwort
Star Strider
am 20 Aug. 2021
syms kappa n(s) r(s) s t(s) r0 t0 n0 Y
Eqn = [diff(r) == t; diff(t) == -r + kappa*n; diff(n) == -kappa*t];
rtn = dsolve(Eqn, r(0)==r0, t(0)==t0, n(0)==n0)
t = simplify(rtn.t, 500)
r = simplify(rtn.r, 500)
n = simplify(rtn.n, 500)
Alternatively:
[VF,Subs] = odeToVectorField(Eqn)
rtnfcn = matlabFunction(VF, 'Vars',{s,Y,kappa})
Use ‘rtnfcn’ with the approopriate numeric ODE solver (for example 0de45, ode15s) depending on the magnitude of κ.
For example:
sspan = linspace(0,10); % Vector Of 's' Values
initconds = rand(3,1); % Initial Conditions
[s,rtn] = ode15s(@(s,rtn,kappa), sspan, initconds); % Integrate
figure
plot(s, rtn)
grid
.
4 Kommentare
Star Strider
am 22 Aug. 2021
As always, my pleasure!
‘Is there a typo in `ode15s(@(s,rtn,kappa), sspan, initconds)`? ’
There is. It should be:
[s,rtn] = ode15s(@(s,rtn) rtnfcn(s,rtn,kappa), sspan, initconds); % Integrate
‘Can I use `rtnfcn` with a boundary-value solver like `bvp4c`?’
Probably. One addition would be to create ‘kappa’ as an anonymous function, for example with ‘s’ as the independent variable and ‘kapa’ as the dependent variable:
kapamtx = [s(:) kapa(:)];
kappa = @(s) interp1(kapamtx(:,1), kapamtx(:,2), s);
It would be necessary either to keep ‘s’ within the limits of ‘kapamtx(:,1)’ in order to avoid either extrapolating or returning NaN values for ‘s’ outside that range.
.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!