fzero function calculating all zeros within interval
31 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Rick
am 28 Jul. 2014
Bearbeitet: mostafa
am 17 Aug. 2019
Hello,
I was thinking about the function fzero. If you have a function that has multiple roots within an interval of your choice, is there a way to show all the roots as an array, instead of only one root closest to the guess?
0 Kommentare
Akzeptierte Antwort
Star Strider
am 28 Jul. 2014
You can first get an estimate of the zeros (if any) in your interval-of-interest by calculating it in that interval, then multiplying the function by circshift of the function to detect any zero-crossings that might be present. After that, use those estimates as your initial guesses for fzero
To illustrate:
x = linspace(0,50,200);
y = @(x) sin(x);
zx = x(y(x).*circshift(y(x),[0 -1]) <= 0); % Estimate zero crossings
zx = zx(1:end-1); % Eliminate any due to ‘wrap-around’ effect
for k1 = 1:length(zx)
fz(k1) = fzero(y, zx(k1));
end
1 Kommentar
mostafa
am 17 Aug. 2019
Bearbeitet: mostafa
am 17 Aug. 2019
It should be corrected to this.
x = linspace(0,50,200);
y = @(x) sin(x);
zx = y(x).*circshift(y(x),[-1]) <= 0; % Estimate zero crossings
zx = zx(1:end-1); % Eliminate any due to ‘wrap-around’ effect
zx = x(zx);
for k1 = 1:length(zx)
fz(k1) = fzero(y, zx(k1));
end
fz
Weitere Antworten (2)
Matt J
am 28 Jul. 2014
Bearbeitet: Matt J
am 31 Okt. 2018
Not for general functions. Certain functions, for example, have infinite roots in a finite interval, e.g., f(x)=0 or f(x)=sin(1/x). So of course the routine won't find all of them for you.
You can't reliably find multiple roots without exploiting some specific apriori known thing about the structure of the function, e.g., that it's a polynomial.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Polynomials finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!