Standardisation and measurement criteria
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi everyone,
Can anyone help me with this problem: I have used zscore to standardise my linear model with 3 predictor variables. The question is, how do I interpret now my MAE,MSE, RMSE? As e.g. the MAE normally would give me an exact number, now I only get a 0.04 number... how do I inpret it?
Thank you!
0 Kommentare
Akzeptierte Antwort
dpb
am 27 Jul. 2014
Bearbeitet: dpb
am 27 Jul. 2014
>> x=1:10;x=x';y=rand(size(x)); % some toy data
>> [b,~,~,~,stats]=regress(y,[ones(size(x)) x]); % not standardized
>> [bz,~,~,~,zstats]=regress(y,[ones(size(x)) zscore(x)]); % standardize x
>> [stats' zstats']
ans =
0.0100 0.0100
0.0808 0.0808
0.7834 0.7834
0.0643 0.0643
They're the same...just must remember to standardize x before evaluating the regression.
Now, add in standarization of y, too...
>> [bzy,~,~,~,zystats]=regress(zscore(y),[ones(size(x)) zscore(x)]);
>> [stats' zstats' zystats']
ans =
0.0100 0.0100 0.0100
0.0808 0.0808 0.0808
0.7834 0.7834 0.7834
0.0643 0.0643 1.1137
>>
Now the variance of the residuals is different because the scale factor for y is changed--with the rand() y used here, it's actually larger numerical since std(y)<1.
The upshot is, those statistics whose values are dependent upon the magnitude are scaled per the computation of the statistic whereas those that are either not scaled depending on which version of standardization used (x or x and y) or are invariant to the magnitude of the variables aren't.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!