eig versus svd functions?

43 Ansichten (letzte 30 Tage)
Traian Preda
Traian Preda am 18 Jul. 2014
Hi,
I would like to ask what is the difference between the function eig and svd and what is the difference between the right eigenvectors and the right singular eigenvectors of these functions?
Thank you

Akzeptierte Antwort

Alfonso Nieto-Castanon
Alfonso Nieto-Castanon am 18 Jul. 2014
Bearbeitet: Alfonso Nieto-Castanon am 18 Jul. 2014
SVD is a decomposition for arbitrary-size matrices, while EIG applies only to square matrices. They are very much related:
The right singular vectors of A are the eigenvectors of A'*A, and the left singular vectors of A are the eigenvectors of A*A'.
Similarly the singular values of A are the square root of the eigenvalues of A*A' (or A'*A, the eigenvalues of those are just the same)
  2 Kommentare
Traian Preda
Traian Preda am 18 Jul. 2014
Hi,
Thank you very much for the answer. So by using eig to a non-square matrix the eigenvectors I get it are wrong? Should I use the svd function to get the correct eigenvectors?
Alfonso Nieto-Castanon
Alfonso Nieto-Castanon am 18 Jul. 2014
not exactly, there are simply no "eigenvectors" of a non-square matrix (eigenvalues/eigenvectors are only defined for square matrices)

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (2)

Traian Preda
Traian Preda am 18 Jul. 2014
Hi again,
For example for this A matrix (square) I get using eig different right eigenvectors than by using svd. Seems that the sign of the ones produces by svd are the correct ones. Why this is happen?
-0,309435400000000 0,0211961600000000 0,0136410800000000 0,00743749000000000 0,00982272000000000 0,0111470200000000 0,00231817000000000 0,00864246000000000 0,00882075000000000 0,00284796000000000 0,00218905000000000 0,000430500000000000 0,000376470000000000 -0,113049800000000 0,00313088000000000 0,00149085000000000 0,00262337000000000 0,00311209000000000 -0,000262570000000000 0,00274903000000000 0,00264655000000000 0,000447630000000000 -0,000306180000000000 -0,00343315000000000 0,0103301100000000 0,0146587200000000 -0,324318800000000 0,00848285000000000 0,0167109100000000 0,0201004200000000 -0,00347676000000000 0,00632566000000000 0,00637912000000000 0,00186275000000000 0,00111713000000000 -0,00141243000000000 0,0464070100000000 0,0700929900000000 0,0900204400000000 -1,25637600000000 0,0836402500000000 0,103855100000000 -0,0114356300000000 0,0277253900000000 0,0280522900000000 0,00843094000000000 0,00547936000000000 -0,00411460000000000 0,0343002800000000 0,0606666900000000 0,0772628000000000 0,0388068100000000 -0,983633200000000 0,101284700000000 0,000288840000000000 0,0190463800000000 0,0194692000000000 0,00636249000000000 0,00501263000000000 0,00161963000000000 0,0216479800000000 0,0390856900000000 0,0497280000000000 0,0259531400000000 0,0538816600000000 -0,620819600000000 0,000968680000000000 0,0118906800000000 0,0121738400000000 0,00402735000000000 0,00325024000000000 0,00144150000000000 0,0560331100000000 0,0322143500000000 0,0452270700000000 0,00474108000000000 0,0665512800000000 0,0879651100000000 -1,14406400000000 0,0420314600000000 0,0413540800000000 0,00940455000000000 0,000919950000000000 -0,0325435900000000 0,0651720900000000 0,148360900000000 0,0550088600000000 0,0311400300000000 0,0376528500000000 0,0420123000000000 0,0135666400000000 -1,51919300000000 0,0778850700000000 -0,0322261000000000 0,0138896200000000 0,0193712200000000 0,0669056200000000 0,140490500000000 0,0573799400000000 0,0320810700000000 0,0399603600000000 0,0448506100000000 0,0126767400000000 0,0401568300000000 -1,54203000000000 -0,119447500000000 -0,000335680000000000 0,00939138000000000 0,0818470500000000 0,154808700000000 0,0715045300000000 0,0394081700000000 0,0507693800000000 0,0573505200000000 0,0137023800000000 -0,0385798100000000 -0,184705900000000 -1,07855600000000 -0,0214767400000000 -0,00365997000000000 0,0835618100000000 0,118544600000000 0,0760379600000000 0,0406107300000000 0,0561993500000000 0,0643053400000000 0,00980772000000000 0,0875483300000000 0,0746029100000000 -0,0136161900000000 -1,29450700000000 -0,0388254600000000 0,00108525000000000 0,000792020000000000 0,00104497000000000 0,000534560000000000 0,000812510000000000 0,000944030000000000 4,82500000000000e-05 0,000902380000000000 0,000866900000000000 0,000141640000000000 -0,000112090000000000 -0,174199600000000
  1 Kommentar
Alfonso Nieto-Castanon
Alfonso Nieto-Castanon am 18 Jul. 2014
the eigenvectors of a square matrix are not generally the same as any of the singular vectors of that same matrix (they are equal/equivalent only when the matrix is symmetric)

Melden Sie sich an, um zu kommentieren.


Traian Preda
Traian Preda am 18 Jul. 2014
OK, then this can be reason that when I try to rebuilt the A matrix, I cannot succeed by using the V, D eigenvectors ([V,D]=eig(A)), but I can rebuilt it when I use V,S,D ([V,S,D]=svd(A))?
Thank you very much
  1 Kommentar
Alfonso Nieto-Castanon
Alfonso Nieto-Castanon am 18 Jul. 2014
Bearbeitet: Alfonso Nieto-Castanon am 18 Jul. 2014
You can reconstruct A from its eigenvectors only if A is normal (A'*A==A*A'). You can reconstruct A from its singular vectors for any matrix A.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by